描述

地震已经破坏了农夫约翰所有的农场以及所有连接农场的道路。作为一个意志坚强的人,他决定重建所有的农场。在重建全部N(1 <= N <= 400)个农场之前,首先必须把所有农场用道路连接起来,即任意两个农场之间必须有至少一条通路。

在研究了地图之后,农夫约翰已经得出了结论:M(1 <= M <= 10,000)条双向的道路可以在较短的时间内建造好。由于约翰的资金有限,他想以尽可能便宜的方法完成工程。

碰巧,农场里的奶牛们组建了一个专门从事重新改造在地震中被破坏的农场道路的工程公司,约翰决定把道路重建的工作交给奶牛们去完成。这些牛也有着锐利的商务感觉,它们希望从工程中获得最大的利益。

约翰和奶牛们经过协商,约翰愿意拿出F (1 <= F <= 2,000,000,000)元钱给奶牛们用于道路重建,要求奶牛们把所有农场用道路连接起来,即任意两个农场之间必须有至少一条通路。

奶牛们根据地图估算出了建造每条道路的成本c(1 <= c <= 2,000,000,000)及用时t(1 <= t <= 2,000,000,000),一对农场之间可以有1条以上可重建道路,并且对于给定的测试数据将所有农场连接起来是能够做到的。

现在奶牛们找到你,要求你编一个程序求出重建农场道路能让奶牛们获得的最大利润率。也就是使得剩余经费与所花时间的比值(赚钱速度)最大。

输入

输入文件包括m+1行,第一行为三个整数 N, M和 F,第二行到第M+1行,每一行都包括4个用空格隔开的整数:i, j, c,和 t分别表示可以重建的一条道路的两端连接的农场,以及重建该条道路的成本和时间。

输出

包含一个实数,表示剩余经费与所花时间的比值,保留4位小数。如果不可能以现有经费连接所有道路,输出0.0000。

样例输入

5 5 100

1 2 20 5

1 3 20 5

1 4 20 5

1 5 20 5

2 3 23 1

样例输出

1.0625

提示

样例解释 奶牛们可以选择修建最后的四条道路,这样所花经费为83,利润为17,所用时间为16,所以,他们在16单位时间内获利17元,所以比值为(100-83)/16=1.0625。

标签

USACO_2001_open_GREEN


一个简单的最优比率生成树。

要求的是F−∑c[i]∑t[i]" role="presentation" style="position: relative;">F−∑c[i]∑t[i]F−∑c[i]∑t[i]的最大值。

变了形就是F−∑(c[i]+k∗t[i])&gt;=0" role="presentation" style="position: relative;">F−∑(c[i]+k∗t[i])>=0F−∑(c[i]+k∗t[i])>=0

这个就是一个简单的01分数规划+最小生成树。

代码:

#include<bits/stdc++.h>
#define N 405
#define M 10005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int n,m,first[N],F,fa[N];
struct Node{int u,v,c,t;double w;}e[M];
inline bool cmp(Node a,Node b){return a.w>b.w;}
inline int find(int x){return x==fa[x]?fa[x]:fa[x]=find(fa[x]);}
inline bool kruskal(double mid){
    double ret=0.0;
    int cnt=0;
    for(int i=1;i<=m;++i)e[i].w=-1.0*e[i].t*mid-e[i].c*1.0;
    sort(e+1,e+m+1,cmp);
    for(int i=1;i<=n;++i)fa[i]=i;
    for(int i=1;i<=m;++i){
        if(cnt==n-1)break;
        int fx=find(e[i].u),fy=find(e[i].v);
        if(fx!=fy)fa[fx]=fy,ret+=e[i].w;
    }
    return ret+F>=0;
}
int main(){
    n=read(),m=read(),F=read();
    for(int i=1;i<=m;++i)e[i].u=read(),e[i].v=read(),e[i].c=read(),e[i].t=read();
    double l=0.0,r=60000;
    while(r-l>1e-7){
        double mid=(l+r)/2;
        if(kruskal(mid))l=mid;
        else r=mid;
    }
    printf("%.4lf",l);
    return 0;
}

2018.09.12 earthquake(最优比率生成树)的更多相关文章

  1. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  2. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  3. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  4. Artificial Intelligence Computing Conference(2018.09.12)

    时间:2018.09.12地点:北京国际饭店会议中心

  5. [USACO]地震 (二分答案+最优比率生成树详解)

    题面:[USACO 2001 OPEN]地震 题目描述: 一场地震把约翰家的牧场摧毁了, 坚强的约翰决心重建家园. 约翰已经重建了N个牧场,现在他希望能修建一些道路把它们连接起来.研究地形之后,约翰发 ...

  6. [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环

    01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...

  7. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  8. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  9. 最优比率生成树 poj2728

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 28407   Accepted: 7863 Desc ...

随机推荐

  1. localhost 127.0.0.1

    No1: localhost也叫local ,正确的解释是:本地服务器 127.0.0.1在windows等系统的正确解释是:本机地址(本机服务器) 他们的解析通过本机的host文件,windows自 ...

  2. PHP闭包

    # 提到闭包就不得不想起匿名函数,也叫闭包函数(closures),貌似PHP闭包实现主要就是靠它.声明一个匿名函数是这样: $func = function() {       }; //带结束符 ...

  3. 使用spring注解——定义bean和自动注入

    对于java bean的定义和依赖配置,使用xml文件真心是不方便. 今天学习如何用注解,解决bean的定义和注入. 常用注解: 1.自动注入:@Resources,@Autowired 2.Bean ...

  4. c++builder XE7 C++11 C++0x 新语法

    Non-static data member initializers 非静态成员变量初始化变得简单,这个XE7 64位编译成功,32位还是不支持 As a simple example, struc ...

  5. js倒计时发送验证码按钮

    var wait=60; function time(o) { if (wait == 0) { o.removeAttribute("disabled"); o.value=&q ...

  6. gevent 实现io自动切换,gevent.join([]), gevent.spawn, 爬虫多并发的实现

    gevent 是一个第三方库,可以很容易的实现遇到io(文件传输)操作时,程序自动跳转到下一个程序 例一: 用gevent.sleep()  来模拟io操作 import gevent def foo ...

  7. Objective C, erum 枚举类型

    typedef NS_ENUM(NSInteger, MYENUM) { TYPE1, TYPE2, TYPE3 };

  8. Can not find the tag library descriptor for "http://www.springframework.org/tags"

    1.Download the Spring dependency jar2.Place it to the lib folder path is /WEB-INF/lib/spring.jar 3.T ...

  9. 分类模型评估之ROC-AUC曲线和PRC曲线

    http://blog.csdn.net/pipisorry/article/details/51788927 在样本分布及其不均匀的情况下,建议用PRC...可以看下这个精确率.召回率.F1 值.R ...

  10. Python在pycharm中编程时应该注意的问题汇总

    1.缩进问题 在 pycharm 中点击 enter 自动进行了换行缩进,此时应该注意:比如 if   else  语句,后面跟着打印输出 print 的时候,一定注意是要if语句下的输出还是else ...