Imagination is an outcome of what you learned. If you can imagine the world, that means you have learned what the world is about.

Actually we don't know how we see, at lease it's really hard to know, so we can't program to tell a machine to see.

One of the most important part in machine learning is to introspect how our brain learn by subconscious. If we can't introspect, it can be fairly hard to replicate a brain.

Linear Models

Supervised learning of linear models can be divided into 2 phases:

  • Training:

    1. Read training data points with labels \(\left\{\mathbf{x}_{1:n},y_{1:n}\right\}\), where \(\mathbf{x}_i \in \mathbb{R}^{1 \times d}, \ y_i \in \mathbb{R}^{1 \times c}\);
    2. Estimate model parameters \(\hat{\theta}\) by certain learning Algorithms.
      Note: The parameters are the information the model learned from data.
  • Prediction:
    1. Read a new data point without label \(\mathbf{x}_{n+1}\) (typically has never seen before);
    2. Along with parameter \(\hat{\theta}\), estimate unknown label \(\hat{y}_{n+1}\).

1-D example:
First of all, we create a linear model:
\[
\hat{y}_i = \theta_0 + \theta_1 x_{i}
\]
Both \(x\) and \(y\) are scalars in this case.

Then we, for example, take SSE (Sum of Squared Error) as our objective / loss / cost / energy / error function1:

\[
J(\theta)=\sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2
\]

Linear Prediction Model

In general, each data point \(x_i\) should have \(d\) dimensions, and the corresponding number of parameters should be \((d+1)\).

The mathematical form of linear model is:
\[
\hat{y}_i = \sum_{j=0}^{d} \theta_jx_{ij}
\]

The matrix form of linear model is:
\[
\begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_n
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_d
\end{bmatrix}
\]
Or in a more compact way:
\[
\mathbf{\hat{y}} = \mathbf{X\theta}
\]
Note that the matrix form is widely used not only because it's a concise way to represent the model, but is also straightforward for coding in MatLab or Python (Numpy).

Optimization Approach

In order to optimize the model prediction, we need to minimize the quadratic cost:
\[
J(\mathbf{\theta}) = \sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2 \\
= \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right)
\]

by setting the derivatives w.r.t vector \(\mathbf{\theta}\) to zero since the cost function is strictly convex and the domain of \(\theta\) is convex2.

\[
\begin{align*}\notag
\frac{\partial J(\mathbf{\theta})}{\partial \mathbf{\theta}} &= \frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right) \\
&=\frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y}^\mathtt T\mathbf{y} + \mathbf{\theta}^\mathtt T \mathbf{X}^\mathtt T\mathbf{X\theta} -2\mathbf{y}^\mathtt T\mathbf{X\theta} \right) \\
&=\mathbf{0}+2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^\mathtt T \mathbf{\theta} - 2 \left( \mathbf{y}^\mathtt T\mathbf{X} \right)^\mathtt T \\
&=2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right) \mathbf{\theta} - 2 \left( \mathbf{X}^\mathtt T\mathbf{y} \right) \\
&\triangleq\mathbf{0}
\end{align*}
\]

So we get \(\mathbf{\hat{\theta}}\) as an analytical solution:
\[
\mathbf{\hat{\theta}} = \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \left( \mathbf{X}^\mathtt T\mathbf{y} \right)
\]

After passing by these procedures, we can see that learning is just about to adjust model parameters so as to minimize the objective function.
Thus, the prediction function can be rewrite as:
\[
\begin{align*}\notag
\mathbf{\hat{y}} &= \mathbf{X\hat{\theta}}\\
&=\mathbf{X}\left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \mathbf{X}^\mathtt T\mathbf{y}
\triangleq \mathbf{Hy}
\end{align*}
\]
where \(\mathbf{H}\) refers to hat matrix because it added hat to \(\mathbf{y}\)

Multidimensional Label \(\mathbf{y_i}\)

So far we have been assuming \(y_i\) to be a scalar. But what if the model have multiple outputs (e.g. \(c\) outputs)? Simply align with \(c\) parameters:
\[
\begin{bmatrix}
y_{11} & \cdots & y_{1c} \\
y_{21} & \cdots & y_{2c} \\
\vdots & \ddots & \vdots \\
y_{n1} & \cdots & y_{nc}
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_{01} & \cdots & \theta_{0c}\\
\theta_{11} & \cdots & \theta_{1c}\\
\theta_{21} & \cdots & \theta_{2c}\\
\vdots & \ddots & \vdots \\
\theta_{d1}& \cdots & \theta_{dc}
\end{bmatrix}
\]

Linear Regression with Maximum Likelihood

If we assume that each label \(y_i\) is Gaussian distributed with mean \(x_i^{\mathtt{T}} \theta\) and variance \(\sigma^2\):
\[
y_i \sim N(x_i^{\mathtt{T}}\theta, \sigma^2) = \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} }
\]

Likelihood

With a reasonable i.i.d. assumption over \(\mathbf{y}\), we can decompose the joint distribution of likelihood:
\[
\begin{align*}\notag
p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} ) &= \prod_{i=1}^n {p(y_i|\mathbf{x}_i,\theta,\sigma^2} ) \\
&=\prod_{i=1}^n \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} } \\
&=\left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{\sum_{i=1}^n \left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2}} \\
&= \left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}}
\end{align*}\notag
\]

Maximum Likelihood Estimation

Then our goal is to maximize the probability of the label in our Gaussian linear regression model w.r.t. \(\theta\) and \(\sigma\).

Instead of minimizing the cost function SSE (length of blue lines), this time we maximize likelihood (length of green lines) to optimize the model parameters.

Since \(\log\) function is monotonic and can simplify exponent function, here we utilize log-likelihood:
\[
\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 ) = -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}
\]

MLE of \(\theta\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} )} }{\partial {\theta}} &= \frac{\partial}{\partial \theta} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= 0 - \frac{1}{2\sigma^2} \frac{\partial{(\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta})}}{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \frac{ \partial{ \left( \mathbf{y}^{\mathtt{T}}\mathbf{y} + \theta^{\mathtt{T}} \mathbf{X}^{\mathtt{T}} \mathbf{X\theta} - 2\mathbf{y}^{\mathtt{T}}\mathbf{X\theta} \right) } }{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \left[ 0+ 2\left( \mathbf{X^{\mathtt{T}}X} \right)^{\mathtt{T}}\theta - 2\left( \mathbf{y}^{\mathtt{T}}\mathbf{X} \right)^{\mathtt{T}} \right] \\
&= -\frac{1}{2\sigma^2} \left[ 2\mathbf{X^{\mathtt{T}}X\theta} - 2\mathbf{X}^{\mathtt{T}}\mathbf{y} \right] \triangleq 0
\end{align*}
\]
There's no surprise that the estimation of maximum likelihood is identical to that of least-square method.
\[
\hat\theta_{MLE} = \left( \mathbf{X}^{\mathtt{T}}\mathbf{X} \right)^{-1} \mathbf{X}^{\mathtt{T}} \mathbf{y}
\]

Besides where the "line" is, using MLE with Gaussian will give us the uncertainty, or confidence as another parameter, of the prediction \(\mathbf{\hat y}\)
MLE of \(\sigma^2\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 )} }{\partial {\sigma}} &= \frac{\partial}{\partial \sigma} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= -\frac{n}{2} \frac{1}{2\pi\sigma^2} 4\pi\sigma + 2 \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{2\sigma^3} \\
&= -\frac{n}{\sigma} + \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{\sigma^3} \triangleq 0
\end{align*}
\]
Thus, we get:
\[
\begin{align*}\notag
\hat\sigma_{MLE}^2 &= \frac1n (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) \\
&= \frac1n \sum_{i=1}^n \left(y_i-\mathbf{x}_i^\mathtt{T}\theta \right)^2
\end{align*}
\]
which is the standard estimate of variance, or mean squared error (MSE).
However, this uncertainty estimator does not work very well. We'll see another uncertainty estimator later that is very powerful.

Again, we analytically obtain the optimal parameters for the model to describe labeled data points.

Prediction

Since we have had the optimal parameters \(\left(\theta_{MLE},\sigma_{MLE}^2\right)\) of our linear regression model, making prediction is simply get the mean of the Gaussian given different test data point \(\mathbf x_*\):
\[
\hat y_* = \mathbf x_*^{\mathtt T}\theta_{MLE}
\]
with uncertainty \(\sigma_{MLE}^2\).

Frequentist Learning

Maximum Likelihood Learning is part of frequentist learning.

Frequentist learning assumes there is a truth (true model) of parameter \(\theta_{truth}\) that if we had adequate data, we would be able to recover that truth. The core of learning in this case is to guess / estimate / learn the parameter \(\hat \theta\) w.r.t. the true model given finite number of training data.

Maximum likelihood is essentially trying to approximate model parameter \(\theta_{truth}\) by maximizing likelihood (joint probability of data given parameter), i.e.

Given \(n\) data points \(\mathbf X = [\mathbf x_1, \cdots,\mathbf x_n]\) with corresponding labels \(\mathbf y = [y_1, \cdots, y_n]\), we choose the value of model parameter \(\theta\) that is most probable to generate such data points.

Also note that frequentist learning relies on Law of Large Numbers.

KL Divergence and MLE

Given i.i.d assumption on data \(\mathbf X\) from distribution \(p(\mathbf X|\theta_{true})\):
\[
p(\mathbf X|\theta_{true})=\prod_{i=1}^n p(\mathbf x_i|\theta_{true}) \\
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \prod_{i=1}^n p(\mathbf x_i|\theta) \\
&= \arg \underset {\theta}{\max}\sum_{i=1}^n \log p(\mathbf x_i|\theta)
\end{align*}
\]
Then we add a constant value \(-\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\) onto the equation and then divide by the constant number \(n\):
\[
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta) -\frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\\
&= \arg \underset {\theta} {\max} \frac 1 n \log \frac{p(\mathbf x_i|\theta)}{p(\mathbf x_i|\theta_{true})}
\end{align*}
\]

Recall Law of Large Numbers that is: as \(n\rightarrow \infty\),
\[
\frac 1 n\sum_{i=1}^nx_i\rightarrow\int xp(x)\mathrm dx=\mathbb E[x]
\]
where \(x_i\) is simulated from \(p(x)\)

Again, we know from frequentist learning that data point \(\mathbf x_i\sim p(\mathbf x|\theta)\). Hence, as \(n\) goes \(\infty\), the MLE of \(\theta\) becomes
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\max} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta)}{p(\mathbf x|\theta_{true})} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min}\ \mathbb E_{p(\mathbf x|\theta_{true})} \left[ \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} \right] \\
&=\arg \underset{\theta}{\min}\ \mathrm {KL} \left[ p(\mathbf x|\theta_{true})\ ||\ p(\mathbf x|\theta) \right]
\end{align*}
\]
Therefore, maximizing likelihood is equivalent to minimizing KL divergence.

Entropy and MLE

In the last part, we get
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log p(\mathbf x|\theta_{true}) p(\mathbf x|\theta_{true}) \mathrm dx - \int_{\mathbf x} \log p(\mathbf x|\theta) p(\mathbf x|\theta_{true}) \mathrm dx
\end{align*}
\]
The first integral in the equation above is negative entropy w.r.t. true parameter \(\theta_{true}\), i.e. information in the world , while the second integral is negative cross entropy w.r.t. model parameter \(\theta\) and true parameter \(\theta_{true}\)., i.e. information from model. The equation says, if the information in the world matches information from model, then the model has learned!

Statistical Quantities of Frequentist Learning

There are 2 quantities that frequentist often estimate:

  • bias
  • variance

Refer: CPSC540, UBC
Written with StackEdit.


  1. SSE is known by everyone but works poorly under certain circumstances e.g. if the training data contains some noise (outliers) then the model will be distorted seriously by outliers.

  2. See one of some interesting explanations here

Linear Regression and Maximum Likelihood Estimation的更多相关文章

  1. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  2. Maximum Likelihood及Maximum Likelihood Estimation

    1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...

  3. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  4. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  5. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  6. 最大似然预计(Maximum likelihood estimation)

    一.定义     最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...

  7. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  8. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  9. MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation

    Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...

随机推荐

  1. 记一次js之button问题

    问题描述:记得某天,发现一件让我非常气愤的事情,居然因为一个按钮导致页面跳转失败或者是根本跳转不了界面,哪怕404也不给我报. 问题回现步骤: (1)正常输入url localhost:8080/te ...

  2. standard cell timing model

    standard cell timing model 主要包括两方面的信息: Cell Delay  calculation Output Transition  calculation 首先,cel ...

  3. PAT乙级1004

    1004 成绩排名 (20 分)   读入 n(>0)名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式: 每个测试输入包含 1 个测试用例,格式为 第 1 行:正 ...

  4. windows服务初识

    参考网址1:http://www.vchome.net/dotnet/dotnetdocs/dotnet38.htm 参考网址2:http://zhidao.baidu.com/link?url=7- ...

  5. js随笔记录

     1.当我们尝试优化一段程序的时候,必须要同时了解语言本身和运行环境就比如说,可能教科书上写移位操作比乘法运算要快,但是这是因为CPU指令的问题,所以对于C语言成立,对于跑在VM上的语言来说则不一定了 ...

  6. 图片 和 base64 互转

    图片转base64 NSData *data = [NSData dataWithContentsOfURL:[NSURL URLWithString:urlStr]]; UIImage *img = ...

  7. SAP函数PREPARE_STRING:提取字符串中的数字

    今天调整一个同事的需求时,要计算一个含税金额.报表内已经取到税率,但存在的形式是字符串格式:16%. 正好SAP内有一个标准函数:PREPARE_STRING 可以处理字符串,将特别标志替换为有效标志 ...

  8. vue父组件为子组件传值传不过去?vue为数组传值,不能直接用等于的方式,要用循环加push的方式

    父组件为子组件传值不成功,子组件拿不到值,不能直接赋值,要用循环加push的方式赋值.

  9. Redis--位图BitMap

    一.BitMap是什么 通过一个bit位来表示某个元素对应的值或者状态,其中的key就是对应元素本身,value对应0或1,我们知道8个bit可以组成一个Byte,所以bitmap本身会极大的节省储存 ...

  10. win10安装OpenSSL及简单的使用

    学习IdentityServer过程中需要使用OpenSSL,OpenSSL是什么东西?百度百科的解释:在计算机网络上,OpenSSL是一个开放源代码的软件库包,应用程序可以使用这个包来进行安全通信, ...