Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have learned what the world is about.
Actually we don't know how we see, at lease it's really hard to know, so we can't program to tell a machine to see.
One of the most important part in machine learning is to introspect how our brain learn by subconscious. If we can't introspect, it can be fairly hard to replicate a brain.
Linear Models
Supervised learning of linear models can be divided into 2 phases:
- Training:
- Read training data points with labels \(\left\{\mathbf{x}_{1:n},y_{1:n}\right\}\), where \(\mathbf{x}_i \in \mathbb{R}^{1 \times d}, \ y_i \in \mathbb{R}^{1 \times c}\);
- Estimate model parameters \(\hat{\theta}\) by certain learning Algorithms.
Note: The parameters are the information the model learned from data.
- Prediction:
- Read a new data point without label \(\mathbf{x}_{n+1}\) (typically has never seen before);
- Along with parameter \(\hat{\theta}\), estimate unknown label \(\hat{y}_{n+1}\).
1-D example:
First of all, we create a linear model:
\[
\hat{y}_i = \theta_0 + \theta_1 x_{i}
\]
Both \(x\) and \(y\) are scalars in this case.

Then we, for example, take SSE (Sum of Squared Error) as our objective / loss / cost / energy / error function1:
\[
J(\theta)=\sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2
\]
Linear Prediction Model
In general, each data point \(x_i\) should have \(d\) dimensions, and the corresponding number of parameters should be \((d+1)\).
The mathematical form of linear model is:
\[
\hat{y}_i = \sum_{j=0}^{d} \theta_jx_{ij}
\]
The matrix form of linear model is:
\[
\begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_n
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_d
\end{bmatrix}
\]
Or in a more compact way:
\[
\mathbf{\hat{y}} = \mathbf{X\theta}
\]
Note that the matrix form is widely used not only because it's a concise way to represent the model, but is also straightforward for coding in MatLab or Python (Numpy).
Optimization Approach
In order to optimize the model prediction, we need to minimize the quadratic cost:
\[
J(\mathbf{\theta}) = \sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2 \\
= \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right)
\]
by setting the derivatives w.r.t vector \(\mathbf{\theta}\) to zero since the cost function is strictly convex and the domain of \(\theta\) is convex2.

\[
\begin{align*}\notag
\frac{\partial J(\mathbf{\theta})}{\partial \mathbf{\theta}} &= \frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right) \\
&=\frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y}^\mathtt T\mathbf{y} + \mathbf{\theta}^\mathtt T \mathbf{X}^\mathtt T\mathbf{X\theta} -2\mathbf{y}^\mathtt T\mathbf{X\theta} \right) \\
&=\mathbf{0}+2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^\mathtt T \mathbf{\theta} - 2 \left( \mathbf{y}^\mathtt T\mathbf{X} \right)^\mathtt T \\
&=2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right) \mathbf{\theta} - 2 \left( \mathbf{X}^\mathtt T\mathbf{y} \right) \\
&\triangleq\mathbf{0}
\end{align*}
\]
So we get \(\mathbf{\hat{\theta}}\) as an analytical solution:
\[
\mathbf{\hat{\theta}} = \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \left( \mathbf{X}^\mathtt T\mathbf{y} \right)
\]
After passing by these procedures, we can see that learning is just about to adjust model parameters so as to minimize the objective function.
Thus, the prediction function can be rewrite as:
\[
\begin{align*}\notag
\mathbf{\hat{y}} &= \mathbf{X\hat{\theta}}\\
&=\mathbf{X}\left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \mathbf{X}^\mathtt T\mathbf{y}
\triangleq \mathbf{Hy}
\end{align*}
\]
where \(\mathbf{H}\) refers to hat matrix because it added hat to \(\mathbf{y}\)
Multidimensional Label \(\mathbf{y_i}\)
So far we have been assuming \(y_i\) to be a scalar. But what if the model have multiple outputs (e.g. \(c\) outputs)? Simply align with \(c\) parameters:
\[
\begin{bmatrix}
y_{11} & \cdots & y_{1c} \\
y_{21} & \cdots & y_{2c} \\
\vdots & \ddots & \vdots \\
y_{n1} & \cdots & y_{nc}
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_{01} & \cdots & \theta_{0c}\\
\theta_{11} & \cdots & \theta_{1c}\\
\theta_{21} & \cdots & \theta_{2c}\\
\vdots & \ddots & \vdots \\
\theta_{d1}& \cdots & \theta_{dc}
\end{bmatrix}
\]
Linear Regression with Maximum Likelihood
If we assume that each label \(y_i\) is Gaussian distributed with mean \(x_i^{\mathtt{T}} \theta\) and variance \(\sigma^2\):
\[
y_i \sim N(x_i^{\mathtt{T}}\theta, \sigma^2) = \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} }
\]
Likelihood
With a reasonable i.i.d. assumption over \(\mathbf{y}\), we can decompose the joint distribution of likelihood:
\[
\begin{align*}\notag
p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} ) &= \prod_{i=1}^n {p(y_i|\mathbf{x}_i,\theta,\sigma^2} ) \\
&=\prod_{i=1}^n \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} } \\
&=\left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{\sum_{i=1}^n \left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2}} \\
&= \left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}}
\end{align*}\notag
\]
Maximum Likelihood Estimation
Then our goal is to maximize the probability of the label in our Gaussian linear regression model w.r.t. \(\theta\) and \(\sigma\).

Instead of minimizing the cost function SSE (length of blue lines), this time we maximize likelihood (length of green lines) to optimize the model parameters.
Since \(\log\) function is monotonic and can simplify exponent function, here we utilize log-likelihood:
\[
\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 ) = -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}
\]
MLE of \(\theta\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} )} }{\partial {\theta}} &= \frac{\partial}{\partial \theta} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= 0 - \frac{1}{2\sigma^2} \frac{\partial{(\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta})}}{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \frac{ \partial{ \left( \mathbf{y}^{\mathtt{T}}\mathbf{y} + \theta^{\mathtt{T}} \mathbf{X}^{\mathtt{T}} \mathbf{X\theta} - 2\mathbf{y}^{\mathtt{T}}\mathbf{X\theta} \right) } }{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \left[ 0+ 2\left( \mathbf{X^{\mathtt{T}}X} \right)^{\mathtt{T}}\theta - 2\left( \mathbf{y}^{\mathtt{T}}\mathbf{X} \right)^{\mathtt{T}} \right] \\
&= -\frac{1}{2\sigma^2} \left[ 2\mathbf{X^{\mathtt{T}}X\theta} - 2\mathbf{X}^{\mathtt{T}}\mathbf{y} \right] \triangleq 0
\end{align*}
\]
There's no surprise that the estimation of maximum likelihood is identical to that of least-square method.
\[
\hat\theta_{MLE} = \left( \mathbf{X}^{\mathtt{T}}\mathbf{X} \right)^{-1} \mathbf{X}^{\mathtt{T}} \mathbf{y}
\]
Besides where the "line" is, using MLE with Gaussian will give us the uncertainty, or confidence as another parameter, of the prediction \(\mathbf{\hat y}\)
MLE of \(\sigma^2\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 )} }{\partial {\sigma}} &= \frac{\partial}{\partial \sigma} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= -\frac{n}{2} \frac{1}{2\pi\sigma^2} 4\pi\sigma + 2 \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{2\sigma^3} \\
&= -\frac{n}{\sigma} + \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{\sigma^3} \triangleq 0
\end{align*}
\]
Thus, we get:
\[
\begin{align*}\notag
\hat\sigma_{MLE}^2 &= \frac1n (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) \\
&= \frac1n \sum_{i=1}^n \left(y_i-\mathbf{x}_i^\mathtt{T}\theta \right)^2
\end{align*}
\]
which is the standard estimate of variance, or mean squared error (MSE).
However, this uncertainty estimator does not work very well. We'll see another uncertainty estimator later that is very powerful.
Again, we analytically obtain the optimal parameters for the model to describe labeled data points.
Prediction
Since we have had the optimal parameters \(\left(\theta_{MLE},\sigma_{MLE}^2\right)\) of our linear regression model, making prediction is simply get the mean of the Gaussian given different test data point \(\mathbf x_*\):
\[
\hat y_* = \mathbf x_*^{\mathtt T}\theta_{MLE}
\]
with uncertainty \(\sigma_{MLE}^2\).
Frequentist Learning
Maximum Likelihood Learning is part of frequentist learning.
Frequentist learning assumes there is a truth (true model) of parameter \(\theta_{truth}\) that if we had adequate data, we would be able to recover that truth. The core of learning in this case is to guess / estimate / learn the parameter \(\hat \theta\) w.r.t. the true model given finite number of training data.
Maximum likelihood is essentially trying to approximate model parameter \(\theta_{truth}\) by maximizing likelihood (joint probability of data given parameter), i.e.
Given \(n\) data points \(\mathbf X = [\mathbf x_1, \cdots,\mathbf x_n]\) with corresponding labels \(\mathbf y = [y_1, \cdots, y_n]\), we choose the value of model parameter \(\theta\) that is most probable to generate such data points.
Also note that frequentist learning relies on Law of Large Numbers.
KL Divergence and MLE
Given i.i.d assumption on data \(\mathbf X\) from distribution \(p(\mathbf X|\theta_{true})\):
\[
p(\mathbf X|\theta_{true})=\prod_{i=1}^n p(\mathbf x_i|\theta_{true}) \\
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \prod_{i=1}^n p(\mathbf x_i|\theta) \\
&= \arg \underset {\theta}{\max}\sum_{i=1}^n \log p(\mathbf x_i|\theta)
\end{align*}
\]
Then we add a constant value \(-\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\) onto the equation and then divide by the constant number \(n\):
\[
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta) -\frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\\
&= \arg \underset {\theta} {\max} \frac 1 n \log \frac{p(\mathbf x_i|\theta)}{p(\mathbf x_i|\theta_{true})}
\end{align*}
\]
Recall Law of Large Numbers that is: as \(n\rightarrow \infty\),
\[
\frac 1 n\sum_{i=1}^nx_i\rightarrow\int xp(x)\mathrm dx=\mathbb E[x]
\]
where \(x_i\) is simulated from \(p(x)\)
Again, we know from frequentist learning that data point \(\mathbf x_i\sim p(\mathbf x|\theta)\). Hence, as \(n\) goes \(\infty\), the MLE of \(\theta\) becomes
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\max} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta)}{p(\mathbf x|\theta_{true})} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min}\ \mathbb E_{p(\mathbf x|\theta_{true})} \left[ \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} \right] \\
&=\arg \underset{\theta}{\min}\ \mathrm {KL} \left[ p(\mathbf x|\theta_{true})\ ||\ p(\mathbf x|\theta) \right]
\end{align*}
\]
Therefore, maximizing likelihood is equivalent to minimizing KL divergence.
Entropy and MLE
In the last part, we get
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log p(\mathbf x|\theta_{true}) p(\mathbf x|\theta_{true}) \mathrm dx - \int_{\mathbf x} \log p(\mathbf x|\theta) p(\mathbf x|\theta_{true}) \mathrm dx
\end{align*}
\]
The first integral in the equation above is negative entropy w.r.t. true parameter \(\theta_{true}\), i.e. information in the world , while the second integral is negative cross entropy w.r.t. model parameter \(\theta\) and true parameter \(\theta_{true}\)., i.e. information from model. The equation says, if the information in the world matches information from model, then the model has learned!
Statistical Quantities of Frequentist Learning
There are 2 quantities that frequentist often estimate:
- bias
- variance
Refer: CPSC540, UBC
Written with StackEdit.
Linear Regression and Maximum Likelihood Estimation的更多相关文章
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
- 最大似然估计(Maximum likelihood estimation)(通过例子理解)
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...
- 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)
maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...
- 最大似然预计(Maximum likelihood estimation)
一.定义 最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...
- 【MLE】最大似然估计Maximum Likelihood Estimation
模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...
- 最大似然估计(Maximum likelihood estimation)
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...
- MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...
随机推荐
- 【转】Android系统中的.apk文件和dex文件
1. *.apk文件 APK是Android Package的缩写,即Android安装包.通过将APK文件直接传到Android模拟器或Android手机中执行即可安装. 使用Android打包工具 ...
- 20155314 2016-2017-2 《Java程序设计》实验四 Android程序设计
20155314 2016-2017-2 <Java程序设计>实验四 Android程序设计 实验任务 基于Android Studio开发简单的Android应用并部署测试 了解Andr ...
- PAT乙级1008
1008 数组元素循环右移问题 (20 分) 一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A0A1⋯A ...
- CentOS添加并挂载新硬盘
1.查看当前硬盘使用状况: [test@master Desktop]$ df -hFilesystem Size Used Avail Use% Mounted on/dev/sda2 13G 12 ...
- 443 B. Table Tennis
http://codeforces.com/contest/879/problem/B n people are standing in a line to play table tennis. At ...
- 用kubeadm 搭建 高可用集群问题记录和复盘整个过程 - 通过journalctl -u kubelet.service命令来查看kubelet服务的日志
1.根据 https://github.com/cookeem/kubeadm-ha/blob/master/README_CN.md 去搭建ha集群,遇到几个问题: runtime networ ...
- STM32中用 stop 模式 配合低功耗模式下的自动唤醒(AWU) 能否实现FreeRTOS tickless 模式
已经实现 ,2018年11月17日11:56:42,具体 如下: 第一步 : 修改 void vPortSetupTimerInterrupt( void ) 函数 ,修改原来的 systick 定 ...
- PyCharm编辑HTML文件时输入{%不能自动补全
在PyCharm编辑HTML文件时输入Django模板语言时,发现录入 {% 不能自动补全. 找了一下,发现 setting 里可以设置 Python Template Languages,选择自己使 ...
- linux-2.6内核驱动学习——jz2440之按键
//以下是学习完韦东山老师视屏教程后所做学习记录中断方式取得按键值: #include <linux/module.h> #include <linux/kernel.h> ...
- telerik WinForm主题切换
通过按钮或Form_Load中切换: ThemeResolutionService.ApplicationThemeName = "Windows 7"; //具体的主题名,不同的 ...
