【LG3245】[HNOI2016]大数

题面

洛谷

题解

60pts

拿vector记一下对于以每个位置为右端点符合要求子串的左端点,

则每次对于一个询问,扫一遍右端点在vector里面二分即可,

虽然空间是平方级别的但是因为数据水还是可以过60的

100pts

记\([i,n]\)表示的数为\(num_i\),则一段区间\([l,r]\)所表示的数为

\[\frac {num_l-num_{r+1}}{10^{r-l+1}}
\]

题目就要使\(\frac {num_l-num_{r+1}}{10^{r-l+1}}\% P=0\)

当\(gcd(10^{r-l+1},P)=1\)时,我们用将每一个\(num\% P\)离散化后莫队维护一下一个值出现的次数即可,

那么对于\(gcd(10^{r-l+1},P)\neq 1\),可以知道此时\(P=2\)或\(5\),因为这时候整除关系只与数的最后一位有关,

转移也非常显然。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX_N = 1e5 + 5;
const int LEN = 320;
char a[MAX_N];
int N, P, Q, bel[MAX_N];
struct Query { int l, r, id; } q[MAX_N];
bool operator < (const Query &lhs, const Query &rhs) {
if (bel[lhs.l] ^ bel[rhs.l]) return bel[lhs.l] < bel[rhs.l];
else return (bel[lhs.l] & 1) ? lhs.r < rhs.r : lhs.r > rhs.r;
}
int s[MAX_N], h[MAX_N], pw[MAX_N];
long long Ans, Cnt, bln[MAX_N], ans[MAX_N];
void Ins(int x) { Ans += bln[s[x]], ++bln[s[x]]; }
void Ers(int x) { --bln[s[x]], Ans -= bln[s[x]]; }
void insl(int x) { Cnt += (a[x] - '0') % P == 0, Ans += Cnt; }
void dell(int x) { Ans -= Cnt, Cnt -= (a[x] - '0') % P == 0; }
void insr(int x, int l, int r) { if ((a[x] - '0') % P == 0) ++Cnt, Ans += r - l + 1; }
void delr(int x, int l, int r) { if ((a[x] - '0') % P == 0) Ans -= r - l + 1, --Cnt; }
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
scanf("%d%s%d", &P, a + 1, &Q); N = strlen(a + 1);
for (int i = 1; i <= Q; i++) scanf("%d%d", &q[i].l, &q[i].r), q[i].id = i;
for (int i = 1; i <= N; i++) bel[i] = (i - 1) / LEN + 1;
sort(&q[1], &q[Q + 1]);
pw[0] = 1; for (int i = 1; i <= N; i++) pw[i] = 10ll * pw[i - 1] % P;
for (int i = N; i; i--) s[i] = (s[i + 1] + 1ll * (a[i] - '0') * pw[N - i] % P) % P;
for (int i = 1; i <= N; i++) h[i] = s[i];
sort(&h[1], &h[N + 2]); int size = unique(&h[1], &h[N + 2]) - h - 1;
for (int i = 1; i <= N; i++) s[i] = lower_bound(&h[1], &h[size + 1], s[i]) - h - 1;
int ql = 1, qr = 0;
if (P != 2 && P != 5) {
for (int i = 1; i <= Q; i++) {
++q[i].r;
while (ql < q[i].l) Ers(ql), ++ql;
while (ql > q[i].l) --ql, Ins(ql);
while (qr < q[i].r) ++qr, Ins(qr);
while (qr > q[i].r) Ers(qr), --qr;
ans[q[i].id] = Ans;
}
} else {
for (int i = 1; i <= Q; i++) {
while (ql > q[i].l) --ql, insl(ql);
while (qr < q[i].r) ++qr, insr(qr, ql, qr);
while (ql < q[i].l) dell(ql), ++ql;
while (qr > q[i].r) delr(qr, ql, qr), --qr;
ans[q[i].id] = Ans;
}
}
for (int i = 1; i <= Q; i++) printf("%lld\n", ans[i]);
return 0;
}

【LG3245】[HNOI2016]大数的更多相关文章

  1. 4542: [Hnoi2016]大数

    4542: [Hnoi2016]大数 链接 分析: 如果p等于2或者5,可以根据最后一位直接知道是不是p的倍数,所以直接记录一个前缀和即可. 如果p不是2或者5,那么一个区间是p的倍数,当且仅当$\f ...

  2. 【BZOJ4542】[Hnoi2016]大数 莫队

    [BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...

  3. BZOJ.4542.[HNOI2016]大数(莫队)

    题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...

  4. BZOJ4542: [Hnoi2016]大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  5. 4542: [Hnoi2016]大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  6. [BZOJ4542] [Hnoi2016] 大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  7. [HNOI2016]大数

    题目描述 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的 ...

  8. bzoj 4542: [Hnoi2016]大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345 小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  9. 洛谷P3245 [HNOI2016]大数(莫队)

    题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...

随机推荐

  1. ORACLE 参数设置绑定变量

    使用 CURSOR_SHARING 参数 EXACT  默认,不替换 SIMIAR 当替换不会影响到执行计划时,才会将字面量替换成绑定变量 FORCE 只要有可能,字面量会被替换为绑定变量

  2. UNIX高级环境编程(1)File I/O

    引言: Unix系统中主要的文件操作包括: open read write lseek close unbuffered IO和standard I/O相对应,后面的章节我们会讨论这两者的区别. 在讨 ...

  3. LintCode,hihoCoder,LeetCode有什么区别?

    https://www.zhihu.com/question/31218682 知乎用户 9 人赞同了该回答 LintCode 和LeetCode的题差不太多LintCode 有中文,不过没有用户讨论 ...

  4. Linux strace命令详解

    Linux抓取TCP的命令: tcpdump ps -ef 参数命令详解: Linux下一切皆文件,我们打开一个socket,实际上也是打开了一个文件 我们打开一个网卡,实际上也是调用Linux系统的 ...

  5. Linux 系统的目录结构_【all】

    Linux系统的目录结构 /:最大根目录,存放系统程序 /etc: 加载配置文件好服务启动命令,系统配置文件 /etc/exports /etc/hosts /bin:binaries 存放命令 /s ...

  6. 【数据结构】 顺序表查找(折半查找&&差值查找)

    #include <stdio.h> #include <stdlib.h> #include <time.h> #define MAXSIZE 10 首先构造一个 ...

  7. 铁乐学python_Day38_多进程和multiprocess模块1

    铁乐学python_Day38_多进程和multiprocess模块1 [进程] 运行中的程序就是一个进程. 所有的进程都是通过它的父进程来创建的. 因此,运行起来的python程序也是一个进程,那么 ...

  8. jquery validation验证身份证号、护照、电话号码、email

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. Java8新特性 -- Lambda基础语法

    Lambda 表达式的基础语法: Java8引入了一个新的操作符 “->”  该操作符称为箭头操作符或Lambda操作符, 该操作符将Lambda表达式拆分为两部分: 左侧: Lambda表达式 ...

  10. 【CF449D】Jzzhu and Numbers

    题目 提供一个非容斥做法--\(FWT\) 我们发现我们要求的东西就是一个背包,只不过是在\(and\)意义下的 自然有 \[dp_{i,j}=\sum_{k\&a_i=j}dp_{i-1,k ...