【LG3245】[HNOI2016]大数
【LG3245】[HNOI2016]大数
题面
题解
60pts
拿vector记一下对于以每个位置为右端点符合要求子串的左端点,
则每次对于一个询问,扫一遍右端点在vector里面二分即可,
虽然空间是平方级别的但是因为数据水还是可以过60的
100pts
记\([i,n]\)表示的数为\(num_i\),则一段区间\([l,r]\)所表示的数为
\]
题目就要使\(\frac {num_l-num_{r+1}}{10^{r-l+1}}\% P=0\)
当\(gcd(10^{r-l+1},P)=1\)时,我们用将每一个\(num\% P\)离散化后莫队维护一下一个值出现的次数即可,
那么对于\(gcd(10^{r-l+1},P)\neq 1\),可以知道此时\(P=2\)或\(5\),因为这时候整除关系只与数的最后一位有关,
转移也非常显然。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX_N = 1e5 + 5;
const int LEN = 320;
char a[MAX_N];
int N, P, Q, bel[MAX_N];
struct Query { int l, r, id; } q[MAX_N];
bool operator < (const Query &lhs, const Query &rhs) {
if (bel[lhs.l] ^ bel[rhs.l]) return bel[lhs.l] < bel[rhs.l];
else return (bel[lhs.l] & 1) ? lhs.r < rhs.r : lhs.r > rhs.r;
}
int s[MAX_N], h[MAX_N], pw[MAX_N];
long long Ans, Cnt, bln[MAX_N], ans[MAX_N];
void Ins(int x) { Ans += bln[s[x]], ++bln[s[x]]; }
void Ers(int x) { --bln[s[x]], Ans -= bln[s[x]]; }
void insl(int x) { Cnt += (a[x] - '0') % P == 0, Ans += Cnt; }
void dell(int x) { Ans -= Cnt, Cnt -= (a[x] - '0') % P == 0; }
void insr(int x, int l, int r) { if ((a[x] - '0') % P == 0) ++Cnt, Ans += r - l + 1; }
void delr(int x, int l, int r) { if ((a[x] - '0') % P == 0) Ans -= r - l + 1, --Cnt; }
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
scanf("%d%s%d", &P, a + 1, &Q); N = strlen(a + 1);
for (int i = 1; i <= Q; i++) scanf("%d%d", &q[i].l, &q[i].r), q[i].id = i;
for (int i = 1; i <= N; i++) bel[i] = (i - 1) / LEN + 1;
sort(&q[1], &q[Q + 1]);
pw[0] = 1; for (int i = 1; i <= N; i++) pw[i] = 10ll * pw[i - 1] % P;
for (int i = N; i; i--) s[i] = (s[i + 1] + 1ll * (a[i] - '0') * pw[N - i] % P) % P;
for (int i = 1; i <= N; i++) h[i] = s[i];
sort(&h[1], &h[N + 2]); int size = unique(&h[1], &h[N + 2]) - h - 1;
for (int i = 1; i <= N; i++) s[i] = lower_bound(&h[1], &h[size + 1], s[i]) - h - 1;
int ql = 1, qr = 0;
if (P != 2 && P != 5) {
for (int i = 1; i <= Q; i++) {
++q[i].r;
while (ql < q[i].l) Ers(ql), ++ql;
while (ql > q[i].l) --ql, Ins(ql);
while (qr < q[i].r) ++qr, Ins(qr);
while (qr > q[i].r) Ers(qr), --qr;
ans[q[i].id] = Ans;
}
} else {
for (int i = 1; i <= Q; i++) {
while (ql > q[i].l) --ql, insl(ql);
while (qr < q[i].r) ++qr, insr(qr, ql, qr);
while (ql < q[i].l) dell(ql), ++ql;
while (qr > q[i].r) delr(qr, ql, qr), --qr;
ans[q[i].id] = Ans;
}
}
for (int i = 1; i <= Q; i++) printf("%lld\n", ans[i]);
return 0;
}
【LG3245】[HNOI2016]大数的更多相关文章
- 4542: [Hnoi2016]大数
4542: [Hnoi2016]大数 链接 分析: 如果p等于2或者5,可以根据最后一位直接知道是不是p的倍数,所以直接记录一个前缀和即可. 如果p不是2或者5,那么一个区间是p的倍数,当且仅当$\f ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
- BZOJ4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [HNOI2016]大数
题目描述 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的 ...
- bzoj 4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345 小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
随机推荐
- ARDUINO 积木式编辑器整理
原文地址:https://blog.everlearn.tw/arduino/arduino-%E7%A9%8D%E6%9C%A8%E5%BC%8F%E7%B7%A8%E8%BC%AF%E5%99%A ...
- Oracle诊断工具 - ORA-4030 Troubleshooting Tool
ORA-4030 说明Oracle服务器进程(server process)无法在操作系统(OS)上分配到足够的内存. 导致ORA-4030 的主要原因有: -物理内存不足 -OS kernel/ ...
- SCCM2012安装、配置
1.sql server2012,排序规则选择:SQL_Latin1_General_CP1_CI_AS1.扩展AD架构2.打开ad用户和计算机,高级--system 容器授予 sccm服务器 完全控 ...
- git 代码上传至远程仓库&从远程库克隆到本地
1.下载安装Git.下载:https://git-scm.com/downloads 安装:可参考文章http://blog.csdn.net/zzfenglin/article/details/5 ...
- 17 汽车服务工程 李腾飞 MP4
- Sharepoint 2013 多服务器域的目录服务器和搜索服务的配置
一般而言,大部分的sharepoint的管理工作均可以通过Centrlal Admin完成,可惜这个操作不得不要用powershell. 假如Webfront服务器叫 WebServer 目录服务器叫 ...
- Maven实战(八)pom.xml简介
目录 pom作为项目对象模型.通过xml表示maven项目,使用pom.xml来实现.主要描述了项目:包括配置文件.开发者需要遵循的规则.缺陷管理系统.组织和licenses.项目的url.项目的依赖 ...
- BZOJ4756:[USACO]Promotion Counting(线段树合并)
Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对于每个奶牛来说,它的子树中有几个能力值比它大的. Input n,表示有几只奶牛 n<=10 ...
- Fluent Terminal
特性: PowerShell,CMD,WSL或自定义shell的终端 支持选项卡和多个窗口 主题和外观配置 导入/导出主题 导入iTerm主题 全屏模式 可编辑的键绑定 搜索功能 配置shell配置文 ...
- Burpsuite-Intruder-xssValidator(XSS检测)基础学习
这次总结的是使用Burp+PhantomJS进行xss测试. 首先,当然是xss测试的环境配置了. 1. PhantomJS安装及Path配置:自己找资料吧. phantomjs -v验证是否成功安装 ...