Saving James Bond - Hard Version

This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).

Assume that the lake is a 100 by 100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions. Given the coordinates of each crocodile and the distance that James could jump, you must tell him a shortest path to reach one of the banks. The length of a path is the number of jumps that James has to make.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (<=100), the number of crocodiles, and D, the maximum distance that James could jump. Then N lines follow, each containing the (x, y) location of a crocodile. Note that no two crocodiles are staying at the same position.

Output Specification:

For each test case, if James can escape, output in one line the minimum number of jumps he must make. Then starting from the next line, output the position (x, y) of each crocodile on the path, each pair in one line, from the island to the bank. If it is impossible for James to escape that way, simply give him 0 as the number of jumps. If there are many shortest paths, just output the one with the minimum first jump, which is guaranteed to be unique.

Sample Input 1:

17 15
10 -21
10 21
-40 10
30 -50
20 40
35 10
0 -10
-25 22
40 -40
-30 30
-10 22
0 11
25 21
25 10
10 10
10 35
-30 10

Sample Output 1:

4
0 11
10 21
10 35
 
 

1.题目分析

这个题目就是典型的最短路径问题~

使用BFS对图进行层级遍历,只要在任一层发现可以跳出的话,那么就逆序打印出来全体路径。

至于这个层次的问题,其实很好实现,因为在BFS入队的过程中,是将一个节点的链接节点依此入队。在入队的时候,只要将此节点的步点数加1写入下一层中即可完成层数的累积。

同时,为了完成最后的打印工作,需要使用一个数组,完成类似于链表的工作。每次压入新的节点时,就要将新节点对应的父节点数组值设置为其父节点的index,这样在推出时逆序压入堆栈,再重新打印出来,即可完成逆序打印工作。

有两个小点值得注意,一个是如果007非常牛逼,直接就可以跳出来的情况需要特殊处理一下。

二是按照题目要求,如果存在相同步数的路径,需要选出第一跳最短的那一条路径。为了实现这一功能,我在将鳄鱼节点录入时,先按照距离原点的距离升序排序。这样,在进行BFS的时候,总是先从短距离向长距离遍历,保证了第一跳最短距离的哪条路径最先被发现。

2.伪码实现

P = 007StartPoint;

if (Could Get Out at the StartPoint)

return FirstGetOut;

EnQueue(P,Queue)

while(IsNotEmpty(Queue))

{

P = DeQueue(Queue);

Find All the Point NextP that jump from P

{

if(NextP is not reached)

{

Jumped(NextP) = Jumped(P) + 1

father(NextP) =   P

if(CouldGetOutFrom(NextP))

return NextP;

EnQueue(NextP, Queue)

}

}

}

return CouldNotJumpOut

3. 通过代码:

 #define NONE -1
#define DISK 100000
#define MISTAKE -11
#define FIOUT 5000000 #include <stdio.h>
#include <stdlib.h> static int jumped[][]; void InitialJumped()
{
int i;
int j;
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
jumped[i][j]=NONE;
}
}
} int IsJumped(int x,int y)
{
if(jumped[x+][y+] != NONE)
{
return ;
}
else
{
return NONE;
}
} void JumpOn(int x,int y,int jumpNum)
{
jumped[x+][y+]= jumpNum;
} int GetJump(int x,int y)
{
return jumped[x+][y+];
} /////////End of Visited ///////////// //////////Begin of Croc////////////// typedef struct Croc{
//location of this Croc
int x;
int y;
int dis;
}tCroc; void SetDis(tCroc* C)
{
C->dis = (C->x)*(C->x) + (C->y)*(C->y);
} int GetDis(tCroc* C)
{
return C->dis;
} //If bond could reach from ori to des.
int Reachable(tCroc* ori,tCroc* des,int step)
{
int oriX;
int oriY;
int desX;
int desY;
int distanceSquare;
int stepSquare; oriX = ori->x;
oriY = ori->y; desX = des->x;
desY = des->y; distanceSquare = (oriX-desX)*(oriX-desX)+(oriY-desY)*(oriY-desY);
stepSquare = step*step; if(stepSquare >= distanceSquare)
{
return ;
}
else
{
return ;
}
} int GetOut(tCroc *ori,int step)
{
if(ori->x + step >= )
{
return ;
}
if(ori->x - step <= -)
{
return ;
}
if(ori->y + step >= )
{
return ;
}
if(ori->y - step <= -)
{
return ;
}
return ;
} //////////End of Croc//////////////// /////////DFS of Croc///////////////// int DFSofCroc(tCroc *ori,tCroc list[],int numOfCroc,int step)
{
int i;
int localStep; JumpOn(ori->x,ori->y,); if((ori->x == )&& (ori->y == ))
{
localStep = step+;
}
else
{
localStep = step;
} if(GetOut(ori,localStep)==)
{
return ;
} for(i = ;i<numOfCroc;i++)
{
if(Reachable(ori,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
int result;
result = DFSofCroc(&list[i],list,numOfCroc,step);
if(result == )
{
return ;
}
}
}
}
return ;
}
//////////////////End of DFS Croc without COUNT///////////////// /////////////////Begin of queue////////////// typedef struct queueNode{
tCroc * thisCroc;
struct queueNode * nextCroc;
}QNode; typedef struct CrocQueue{
QNode *head;
QNode *tail;
}tCrocQueue; tCrocQueue* InitialQueue()
{
tCrocQueue* temp = malloc(sizeof(tCrocQueue));
temp->head = NULL;
temp->tail = NULL;
return temp;
} void EnQueue(QNode *node,tCrocQueue *Q)
{
if(Q->head == NULL)
{
Q->head = node;
Q->tail = node;
return ;
}
else
{
Q->tail->nextCroc = node;
Q->tail = node;
return;
}
} QNode * DeQueue(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return NULL;
}
else
{
QNode *temp = Q->head;
if(Q->head == Q->tail)
{
Q->head = NULL;
Q->tail = NULL;
}
else
{
Q->head = Q->head->nextCroc;
}
return temp;
}
} int IsQueueEmpty(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return ;
}
else
{
return ;
}
}
////////////////End of queue ///////////////// ////////////////Begin of BFS///////////////// int BFS(tCroc *ori, tCroc list[], int Sum, int step, tCrocQueue *Q, int father[])
{
int count;
int myfather;
myfather = DISK;
count = ;
JumpOn(ori->x,ori->y,count);
if(GetOut(ori,step+)==)
{
return FIOUT;
}
QNode * thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = ori;
EnQueue(thisNode,Q);
while(IsQueueEmpty(Q)==)
{
int i ;
int localStep;
QNode* temp = DeQueue(Q); count = GetJump(temp->thisCroc->x,temp->thisCroc->y); if((temp->thisCroc->x == )&&(temp->thisCroc->y==))
{
localStep = step + ;
myfather = DISK;
}
else
{
localStep = step;
for(i = ; i < Sum ; i++)
{
if((temp->thisCroc->x == list[i].x)&&(temp->thisCroc->y== list[i].y))
{
myfather = i;
break;
}
}
} for(i = ; i < Sum ;i++)
{
if(Reachable(temp->thisCroc,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
JumpOn(list[i].x,list[i].y,(count+));
father[i] = myfather; if(GetOut(&list[i],step)==)
{
return i;
}
thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = &list[i];
EnQueue(thisNode,Q);
}
}
}
} return NONE;
} ////////////////End of BFS///////////////////
////////////////Begin Stack//////////////////
typedef struct stackNode{
tCroc *thisNode;
struct stackNode * next;
}tStackNode; typedef struct CrocStack{
tStackNode* Top;
tStackNode* Bottom;
}tCrocStack; tCrocStack* InitialStack()
{
tCrocStack * temp = malloc(sizeof(tCrocStack));
temp->Top = NULL;
temp->Bottom = NULL;
return temp;
} void Push(tStackNode *node,tCrocStack * S)
{
if(S->Top == NULL)
{
S->Top = node;
S->Bottom = node;
}
else
{
node->next = S->Top;
S->Top = node;
}
} tStackNode *Pop(tCrocStack *S)
{
if(S->Top == NULL)
{
return NULL;
}
else
{
tStackNode * temp = S->Top;
if(S->Top == S->Bottom)
{
S->Bottom = NULL;
S->Top = NULL;
}
else
{
S->Top = S->Top->next;
}
return temp;
}
} int IsStackEmpty(tCrocStack *S)
{
if(S->Top == NULL)
{
return ;
}
else
{
return ;
}
}
/////////////////End of Stack//////////////// int main()
{
int numOfCrocs;
int step;
int i; InitialJumped();
scanf("%d %d",&numOfCrocs,&step); tCroc crocs[numOfCrocs];
int preCro[numOfCrocs]; //Put all the cordinates X,Y into array
for(i=;i<numOfCrocs;i++)
{
int j;
int tempX;
int tempY;
scanf("%d %d",&tempX,&tempY);
if( tempX > || tempX< - || tempY > || tempY < - )
{
i--;
numOfCrocs--;
continue;
}
crocs[i].x = tempX;
crocs[i].y = tempY;
SetDis(&crocs[i]);
for(j=i-;j>=;j--)
{
if(crocs[j].x == crocs[i].x && crocs[j].y == crocs[i].y)
{
i--;
numOfCrocs--;
j=MISTAKE;
break;
}
}
if(j==MISTAKE)
{
continue;
} for(j=i;j>;j--)
{
if(GetDis(&crocs[j])<GetDis(&crocs[j-]))
{
tCroc temp = crocs[j-];
crocs[j-]=crocs[j];
crocs[j]=temp;
}
else
{
break;
}
}
preCro[i] = NONE;
} // printf("---------------\n");
// for(i=0;i<numOfCrocs;i++)
// {
// printf("%d %d %d\n",crocs[i].x,crocs[i].y,crocs[i].dis);
// }
// printf("---------------\n"); tCroc *Zero = malloc(sizeof(tCroc));
Zero->x = ;
Zero->y = ; tCrocQueue * MyQueue = InitialQueue(); int result; result = BFS(Zero,crocs,numOfCrocs,step,MyQueue,preCro); if(result == NONE)
{
printf("");
return ;
}
else if(result == FIOUT)
{
printf("");
}
else
{
int Dis = GetJump(crocs[result].x,crocs[result].y);
printf("%d\n",Dis+);
} tCrocStack * MyStack = InitialStack();
while(result != DISK)
{
tStackNode *temp = malloc(sizeof(tStackNode));
temp->thisNode = &crocs[result];
Push(temp,MyStack);
result = preCro[result];
} while(IsStackEmpty(MyStack)==)
{
int printX;
int printY;
tStackNode *temp = Pop(MyStack); printX = temp->thisNode->x;
printY = temp->thisNode->y;
printf("%d %d\n",printX,printY);
} // result = DFSofCroc(Zero,crocs,numOfCrocs,step); // if(result == 1)
// {
// printf("Yes");
// }
// else
// {
// printf("No");
// } return ;
}

PAT Mooc datastructure 6-1的更多相关文章

  1. PAT mooc DataStructure 4-2 SetCollection

    数据结构习题集-4-2 集合的运用 1.题目: We have a network of computers and a list of bi-directional connections. Eac ...

  2. PAT MOOC dataStructure 4-1

    数据结构练习 4-1 AVL 树 1. 题目: Input Specification: Each input file contains one test case. For each case, ...

  3. PAT B1080 MOOC期终成绩(C++)

    PAT甲级目录 | PAT乙级目录 题目描述 B1080 MOOC期终成绩 解题思路 可利用 map 将字符串型的学号转换为整型的序号,方便查找.输入全部成绩后,遍历每个学生同时计算最终成绩,然后将成 ...

  4. PAT 乙级 1080 MOOC期终成绩 (25 分)

    1080 MOOC期终成绩 (25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的 ...

  5. PAT 1080 MOOC期终成绩(25)(STL-map及multiset+思路+测试点分析)

    1080 MOOC期终成绩(25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习"数据结构"课程的学生,想要获得一张合格证书,必须首先获 ...

  6. PAT 1080 MOOC期终成绩

    https://pintia.cn/problem-sets/994805260223102976/problems/994805261493977088 对于在中国大学MOOC(http://www ...

  7. PAT Basic 1080 MOOC期终成绩 (25 分)

    对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的在线编程作业分,然后总评获得不少于60分( ...

  8. 【PAT】B1080 MOOC期终成绩(25 分)

    还是c++好用,三部分输入直接用相同的方法, 用map映射保存学生在结构体数组中的下标. 结构体保存学生信息,其中期末成绩直接初始化为-1, 注意四舍五入 此题还算简单 #include<ios ...

  9. PAT乙级考前总结(三)

    特殊题型 1027 打印沙漏 (20 分) 题略,感觉有点像大学里考试的题.找规律即可. #include <stdio.h>#include <iostream>using ...

随机推荐

  1. C#性能优化考虑的几个方向

    装箱与拆箱 ArrayList's vs. generic List for primitive types and 64-bits 类型转换   GC 注意SOH对象应该较快,避免内存泄漏 注意LO ...

  2. Linux下管道编程

    功能: 父进程创建一个子进程父进程负责读用户终端输入,并写入管道 子进程从管道接收字符流写入另一个文件 代码: #include <stdio.h> #include <unistd ...

  3. django博客功能实现——标签功能

    标签功能添加流程 0.功能概括 标签作为文章中的分类标记,会显示出该文章是关于哪一方面的文章,比如是关于python的还是关于django的. 当我们点击该标签的时候,会出现该博客中所有属于该标签的文 ...

  4. vuejs的动态过滤

    想要通过vuejs动态过滤(这里动态指得是过滤的条件是动态变化的), 一直没找到好办法, 最蠢的办法当然是两个两个数组,一个作为原始副本数组 一个作为视图数组,这样当过滤条件变化的时候 动态拷贝原始数 ...

  5. AppBox升级进行时 - 扁平化的权限设计

    AppBox 是基于 FineUI 的通用权限管理框架,包括用户管理.职称管理.部门管理.角色管理.角色权限管理等模块. AppBox v2.0中的权限实现 AppBox v2.0中权限管理中涉及三个 ...

  6. ASP.NET中的缓存机制

    ASP.NET 提供一个功能完整的缓存引擎,页面可使用该引擎通过 HTTP 请求存储和检索任意对象.缓存的生存期与应用程序的生存期相同,也就是说,当应用程序重新启动时,将重新创建缓存. 将数据添加到缓 ...

  7. Jumony Core 3,真正的HTML引擎,正式版发布

    Jumony是一个开源项目,已经有三年的历史了,在这三年中,秉承提供给.NET程序员完整的HTML掌控能力,Jumony历经无数次的改进,终于进入了一个新的阶段.Jumony Core 3是一个真正意 ...

  8. 关于Unity的网络框架

    注:Unity 5.1里引入了新的网络框架,未来目标应该是WOW那样的,现在还只是个P2P的架子. 网络的框架,无非是如何管理网络数据的收发,通信双方如何约定协议.之前做的框架与GameObject无 ...

  9. JS中的进制转换以及作用

    js的进制转换, 分为2进制,8进制,10进制,16进制之间的相互转换, 我们直接利用 对象.toString()即可实现: //10进制转为16进制 ().toString() // =>&q ...

  10. Ubuntu/Mint更换阿里云源

    sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak #备份 sudo vim /etc/apt/sources.list #修改 sudo ...