Saving James Bond - Hard Version

This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).

Assume that the lake is a 100 by 100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions. Given the coordinates of each crocodile and the distance that James could jump, you must tell him a shortest path to reach one of the banks. The length of a path is the number of jumps that James has to make.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (<=100), the number of crocodiles, and D, the maximum distance that James could jump. Then N lines follow, each containing the (x, y) location of a crocodile. Note that no two crocodiles are staying at the same position.

Output Specification:

For each test case, if James can escape, output in one line the minimum number of jumps he must make. Then starting from the next line, output the position (x, y) of each crocodile on the path, each pair in one line, from the island to the bank. If it is impossible for James to escape that way, simply give him 0 as the number of jumps. If there are many shortest paths, just output the one with the minimum first jump, which is guaranteed to be unique.

Sample Input 1:

17 15
10 -21
10 21
-40 10
30 -50
20 40
35 10
0 -10
-25 22
40 -40
-30 30
-10 22
0 11
25 21
25 10
10 10
10 35
-30 10

Sample Output 1:

4
0 11
10 21
10 35
 
 

1.题目分析

这个题目就是典型的最短路径问题~

使用BFS对图进行层级遍历,只要在任一层发现可以跳出的话,那么就逆序打印出来全体路径。

至于这个层次的问题,其实很好实现,因为在BFS入队的过程中,是将一个节点的链接节点依此入队。在入队的时候,只要将此节点的步点数加1写入下一层中即可完成层数的累积。

同时,为了完成最后的打印工作,需要使用一个数组,完成类似于链表的工作。每次压入新的节点时,就要将新节点对应的父节点数组值设置为其父节点的index,这样在推出时逆序压入堆栈,再重新打印出来,即可完成逆序打印工作。

有两个小点值得注意,一个是如果007非常牛逼,直接就可以跳出来的情况需要特殊处理一下。

二是按照题目要求,如果存在相同步数的路径,需要选出第一跳最短的那一条路径。为了实现这一功能,我在将鳄鱼节点录入时,先按照距离原点的距离升序排序。这样,在进行BFS的时候,总是先从短距离向长距离遍历,保证了第一跳最短距离的哪条路径最先被发现。

2.伪码实现

P = 007StartPoint;

if (Could Get Out at the StartPoint)

return FirstGetOut;

EnQueue(P,Queue)

while(IsNotEmpty(Queue))

{

P = DeQueue(Queue);

Find All the Point NextP that jump from P

{

if(NextP is not reached)

{

Jumped(NextP) = Jumped(P) + 1

father(NextP) =   P

if(CouldGetOutFrom(NextP))

return NextP;

EnQueue(NextP, Queue)

}

}

}

return CouldNotJumpOut

3. 通过代码:

 #define NONE -1
#define DISK 100000
#define MISTAKE -11
#define FIOUT 5000000 #include <stdio.h>
#include <stdlib.h> static int jumped[][]; void InitialJumped()
{
int i;
int j;
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
jumped[i][j]=NONE;
}
}
} int IsJumped(int x,int y)
{
if(jumped[x+][y+] != NONE)
{
return ;
}
else
{
return NONE;
}
} void JumpOn(int x,int y,int jumpNum)
{
jumped[x+][y+]= jumpNum;
} int GetJump(int x,int y)
{
return jumped[x+][y+];
} /////////End of Visited ///////////// //////////Begin of Croc////////////// typedef struct Croc{
//location of this Croc
int x;
int y;
int dis;
}tCroc; void SetDis(tCroc* C)
{
C->dis = (C->x)*(C->x) + (C->y)*(C->y);
} int GetDis(tCroc* C)
{
return C->dis;
} //If bond could reach from ori to des.
int Reachable(tCroc* ori,tCroc* des,int step)
{
int oriX;
int oriY;
int desX;
int desY;
int distanceSquare;
int stepSquare; oriX = ori->x;
oriY = ori->y; desX = des->x;
desY = des->y; distanceSquare = (oriX-desX)*(oriX-desX)+(oriY-desY)*(oriY-desY);
stepSquare = step*step; if(stepSquare >= distanceSquare)
{
return ;
}
else
{
return ;
}
} int GetOut(tCroc *ori,int step)
{
if(ori->x + step >= )
{
return ;
}
if(ori->x - step <= -)
{
return ;
}
if(ori->y + step >= )
{
return ;
}
if(ori->y - step <= -)
{
return ;
}
return ;
} //////////End of Croc//////////////// /////////DFS of Croc///////////////// int DFSofCroc(tCroc *ori,tCroc list[],int numOfCroc,int step)
{
int i;
int localStep; JumpOn(ori->x,ori->y,); if((ori->x == )&& (ori->y == ))
{
localStep = step+;
}
else
{
localStep = step;
} if(GetOut(ori,localStep)==)
{
return ;
} for(i = ;i<numOfCroc;i++)
{
if(Reachable(ori,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
int result;
result = DFSofCroc(&list[i],list,numOfCroc,step);
if(result == )
{
return ;
}
}
}
}
return ;
}
//////////////////End of DFS Croc without COUNT///////////////// /////////////////Begin of queue////////////// typedef struct queueNode{
tCroc * thisCroc;
struct queueNode * nextCroc;
}QNode; typedef struct CrocQueue{
QNode *head;
QNode *tail;
}tCrocQueue; tCrocQueue* InitialQueue()
{
tCrocQueue* temp = malloc(sizeof(tCrocQueue));
temp->head = NULL;
temp->tail = NULL;
return temp;
} void EnQueue(QNode *node,tCrocQueue *Q)
{
if(Q->head == NULL)
{
Q->head = node;
Q->tail = node;
return ;
}
else
{
Q->tail->nextCroc = node;
Q->tail = node;
return;
}
} QNode * DeQueue(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return NULL;
}
else
{
QNode *temp = Q->head;
if(Q->head == Q->tail)
{
Q->head = NULL;
Q->tail = NULL;
}
else
{
Q->head = Q->head->nextCroc;
}
return temp;
}
} int IsQueueEmpty(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return ;
}
else
{
return ;
}
}
////////////////End of queue ///////////////// ////////////////Begin of BFS///////////////// int BFS(tCroc *ori, tCroc list[], int Sum, int step, tCrocQueue *Q, int father[])
{
int count;
int myfather;
myfather = DISK;
count = ;
JumpOn(ori->x,ori->y,count);
if(GetOut(ori,step+)==)
{
return FIOUT;
}
QNode * thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = ori;
EnQueue(thisNode,Q);
while(IsQueueEmpty(Q)==)
{
int i ;
int localStep;
QNode* temp = DeQueue(Q); count = GetJump(temp->thisCroc->x,temp->thisCroc->y); if((temp->thisCroc->x == )&&(temp->thisCroc->y==))
{
localStep = step + ;
myfather = DISK;
}
else
{
localStep = step;
for(i = ; i < Sum ; i++)
{
if((temp->thisCroc->x == list[i].x)&&(temp->thisCroc->y== list[i].y))
{
myfather = i;
break;
}
}
} for(i = ; i < Sum ;i++)
{
if(Reachable(temp->thisCroc,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
JumpOn(list[i].x,list[i].y,(count+));
father[i] = myfather; if(GetOut(&list[i],step)==)
{
return i;
}
thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = &list[i];
EnQueue(thisNode,Q);
}
}
}
} return NONE;
} ////////////////End of BFS///////////////////
////////////////Begin Stack//////////////////
typedef struct stackNode{
tCroc *thisNode;
struct stackNode * next;
}tStackNode; typedef struct CrocStack{
tStackNode* Top;
tStackNode* Bottom;
}tCrocStack; tCrocStack* InitialStack()
{
tCrocStack * temp = malloc(sizeof(tCrocStack));
temp->Top = NULL;
temp->Bottom = NULL;
return temp;
} void Push(tStackNode *node,tCrocStack * S)
{
if(S->Top == NULL)
{
S->Top = node;
S->Bottom = node;
}
else
{
node->next = S->Top;
S->Top = node;
}
} tStackNode *Pop(tCrocStack *S)
{
if(S->Top == NULL)
{
return NULL;
}
else
{
tStackNode * temp = S->Top;
if(S->Top == S->Bottom)
{
S->Bottom = NULL;
S->Top = NULL;
}
else
{
S->Top = S->Top->next;
}
return temp;
}
} int IsStackEmpty(tCrocStack *S)
{
if(S->Top == NULL)
{
return ;
}
else
{
return ;
}
}
/////////////////End of Stack//////////////// int main()
{
int numOfCrocs;
int step;
int i; InitialJumped();
scanf("%d %d",&numOfCrocs,&step); tCroc crocs[numOfCrocs];
int preCro[numOfCrocs]; //Put all the cordinates X,Y into array
for(i=;i<numOfCrocs;i++)
{
int j;
int tempX;
int tempY;
scanf("%d %d",&tempX,&tempY);
if( tempX > || tempX< - || tempY > || tempY < - )
{
i--;
numOfCrocs--;
continue;
}
crocs[i].x = tempX;
crocs[i].y = tempY;
SetDis(&crocs[i]);
for(j=i-;j>=;j--)
{
if(crocs[j].x == crocs[i].x && crocs[j].y == crocs[i].y)
{
i--;
numOfCrocs--;
j=MISTAKE;
break;
}
}
if(j==MISTAKE)
{
continue;
} for(j=i;j>;j--)
{
if(GetDis(&crocs[j])<GetDis(&crocs[j-]))
{
tCroc temp = crocs[j-];
crocs[j-]=crocs[j];
crocs[j]=temp;
}
else
{
break;
}
}
preCro[i] = NONE;
} // printf("---------------\n");
// for(i=0;i<numOfCrocs;i++)
// {
// printf("%d %d %d\n",crocs[i].x,crocs[i].y,crocs[i].dis);
// }
// printf("---------------\n"); tCroc *Zero = malloc(sizeof(tCroc));
Zero->x = ;
Zero->y = ; tCrocQueue * MyQueue = InitialQueue(); int result; result = BFS(Zero,crocs,numOfCrocs,step,MyQueue,preCro); if(result == NONE)
{
printf("");
return ;
}
else if(result == FIOUT)
{
printf("");
}
else
{
int Dis = GetJump(crocs[result].x,crocs[result].y);
printf("%d\n",Dis+);
} tCrocStack * MyStack = InitialStack();
while(result != DISK)
{
tStackNode *temp = malloc(sizeof(tStackNode));
temp->thisNode = &crocs[result];
Push(temp,MyStack);
result = preCro[result];
} while(IsStackEmpty(MyStack)==)
{
int printX;
int printY;
tStackNode *temp = Pop(MyStack); printX = temp->thisNode->x;
printY = temp->thisNode->y;
printf("%d %d\n",printX,printY);
} // result = DFSofCroc(Zero,crocs,numOfCrocs,step); // if(result == 1)
// {
// printf("Yes");
// }
// else
// {
// printf("No");
// } return ;
}

PAT Mooc datastructure 6-1的更多相关文章

  1. PAT mooc DataStructure 4-2 SetCollection

    数据结构习题集-4-2 集合的运用 1.题目: We have a network of computers and a list of bi-directional connections. Eac ...

  2. PAT MOOC dataStructure 4-1

    数据结构练习 4-1 AVL 树 1. 题目: Input Specification: Each input file contains one test case. For each case, ...

  3. PAT B1080 MOOC期终成绩(C++)

    PAT甲级目录 | PAT乙级目录 题目描述 B1080 MOOC期终成绩 解题思路 可利用 map 将字符串型的学号转换为整型的序号,方便查找.输入全部成绩后,遍历每个学生同时计算最终成绩,然后将成 ...

  4. PAT 乙级 1080 MOOC期终成绩 (25 分)

    1080 MOOC期终成绩 (25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的 ...

  5. PAT 1080 MOOC期终成绩(25)(STL-map及multiset+思路+测试点分析)

    1080 MOOC期终成绩(25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习"数据结构"课程的学生,想要获得一张合格证书,必须首先获 ...

  6. PAT 1080 MOOC期终成绩

    https://pintia.cn/problem-sets/994805260223102976/problems/994805261493977088 对于在中国大学MOOC(http://www ...

  7. PAT Basic 1080 MOOC期终成绩 (25 分)

    对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的在线编程作业分,然后总评获得不少于60分( ...

  8. 【PAT】B1080 MOOC期终成绩(25 分)

    还是c++好用,三部分输入直接用相同的方法, 用map映射保存学生在结构体数组中的下标. 结构体保存学生信息,其中期末成绩直接初始化为-1, 注意四舍五入 此题还算简单 #include<ios ...

  9. PAT乙级考前总结(三)

    特殊题型 1027 打印沙漏 (20 分) 题略,感觉有点像大学里考试的题.找规律即可. #include <stdio.h>#include <iostream>using ...

随机推荐

  1. Java基础知识笔记(三:文件与数据流)

    一.输入流与输出流 输入流将数据从文件.标准输入或其他外部输入设备中加载到内存.输出流的作用则刚好相反,即将在内存中的数据保存到文件中,或传输给输出设备.输入流在Java语言中对应于抽象类java.i ...

  2. EF级联删除

    引言     在主表中指定Key,子表中指定Required后,并不会在数据库中生成级联删除的外键.那怎么才能使EF在数据中生成级联删除的外键? SQLServer数据库中级联删除功能配置界面: 上图 ...

  3. [转]MVC过滤器

    本文转自:http://www.cnblogs.com/HopeGi/p/3342083.html APS.NET MVC中(以下简称“MVC”)的每一个请求,都会分配给相应的控制器和对应的行为方法去 ...

  4. NOIP2001 一元三次方程求解[导数+牛顿迭代法]

    题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...

  5. 第10章 Java类的三大特性之一:多态

    1.Java中的多态 多态是指对象的多种形态,主要包括这两种: 1.1引用多态 a.父类的引用可以指向本类的对象b.父类的引用可以指向子类的对象举个例子:父类Anmail,子类Dog,可以使用父类An ...

  6. [转]Windows平台下Makefile学习笔记

    Windows平台下Makefile学习笔记(一) 作者:朱金灿 来源:http://blog.csdn.net/clever101 决心学习Makefile,一方面是为了解决编译开源代码时需要跨编译 ...

  7. play with make

    1) the VPATH variable In make world, the VPATH variable guide you where to find the .c/.o file 2) th ...

  8. 搭建一套自己实用的.net架构(4)【CodeBuilder-RazorEngine】

    工欲善其事必先利其器,  下面来说说代码生成器. 现在代码生成器品种繁多各式各样, 什么codesmith.T4. 动软也算.那么每款代码生成器都有自己模板解析引擎. 现在比较流行的 NVelocit ...

  9. php 单双引号的区别

    在PHP中,字符串的定义可以使用英文单引号' ',也可以使用英文双引号" ". 但是必须使用同一种单或双引号来定义字符串,如:'Hello World"和"He ...

  10. redis 的源码编译安装

    首先我们下载软件包到指定的目录下 tar -zxvf redis-2.8.19.tar.gz cd redis-2.8.19 make make PREFIX=/usr/local/redis ins ...