CodeForces 396C On Changing Tree
On Changing Tree
This problem will be judged on CodeForces. Original ID: 396C
64-bit integer IO format: %I64d Java class name: (Any)
Initially all vertices contain number 0. Then come q queries, each query has one of the two types:
- The format of the query: 1 v x k. In response to the query, you need to add to the number at vertex v number x; to the numbers at the descendants of vertex v at distance 1, addx - k; and so on, to the numbers written in the descendants of vertex v at distance i, you need to add x - (i·k). The distance between two vertices is the number of edges in the shortest path between these vertices.
- The format of the query: 2 v. In reply to the query you should print the number written in vertex v modulo 1000000007 (109 + 7).
Process the queries given in the input.
Input
The first line contains integer n (1 ≤ n ≤ 3·105) — the number of vertices in the tree. The second line contains n - 1 integers p2, p3, ... pn (1 ≤ pi < i), where pi is the number of the vertex that is the parent of vertex i in the tree.
The third line contains integer q (1 ≤ q ≤ 3·105) — the number of queries. Next q lines contain the queries, one per line. The first number in the line is type. It represents the type of the query. If type = 1, then next follow space-separated integers v, x, k (1 ≤ v ≤ n; 0 ≤ x < 109 + 7; 0 ≤ k < 109 + 7). If type = 2, then next follows integer v (1 ≤ v ≤ n) — the vertex where you need to find the value of the number.
Output
For each query of the second type print on a single line the number written in the vertex from the query. Print the number modulo 1000000007 (109 + 7).
Sample Input
3
1 1
3
1 1 2 1
2 1
2 2
2
1
Hint
You can read about a rooted tree here: http://en.wikipedia.org/wiki/Tree_(graph_theory).
Source
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
const int mod = ;
vector<int>g[maxn];
LL c[][maxn],val[];
int n,m,L[maxn],R[maxn],d[maxn],clk;
void update(int i){
while(i < maxn){
c[][i] += val[];
c[][i] += val[];
c[][i] %= mod;
c[][i] %= mod;
i += i&-i;
}
}
LL query(int i){
LL sum[] = {},dep = d[i];
i = L[i];
while(i > ){
sum[] += c[][i];
sum[] += c[][i];
sum[] %= mod;
sum[] %= mod;
i -= i&-i;
}
return ((sum[] - dep*sum[])%mod + mod)%mod;
}
void dfs(int u,int dep){
L[u] = ++clk;
d[u] = dep;
for(int i = g[u].size()-; i >= ; --i)
dfs(g[u][i],dep+);
R[u] = clk;
}
int main(){
int u,op,x,y,z;
while(~scanf("%d",&n)){
for(int i = clk = ; i <= n; ++i) g[i].clear();
for(int i = ; i <= n; ++i){
scanf("%d",&u);
g[u].push_back(i);
}
dfs(,);
memset(c,,sizeof c);
scanf("%d",&m);
while(m--){
scanf("%d%d",&op,&x);
if(op == ){
scanf("%d%d",&y,&z);
val[] = ((LL)y + (LL)d[x]*z)%mod;
val[] = z;
update(L[x]);
val[] = -val[];
val[] = -val[];
update(R[x]+);
}else printf("%I64d\n",query(x));
}
}
return ;
}
CodeForces 396C On Changing Tree的更多相关文章
- CodeForces - 396C On Changing Tree(树状数组)
题目大意 给定一棵以1为根的树,初始时所有点为0 给出树的方式是从节点2开始给出每一个点的父亲 然后是 $m$ 次操作,分为两种 $1 v,k,x$ 表示在以v为根的子树中的每一个点上添加 $x-i* ...
- Codeforces 461B Appleman and Tree(木dp)
题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...
- CF396C On Changing Tree
CF396C On Changing Tree 给定一棵以 \(1\) 为根的树,初始时所有点权为 \(0\) 有 \(m\) 次操作,分为两种 \(1\ u\ x\ k\) 表示给以 \(u\) 的 ...
- Codeforces 1129 E.Legendary Tree
Codeforces 1129 E.Legendary Tree 解题思路: 这题好厉害,我来复读一下官方题解,顺便补充几句. 首先,可以通过询问 \(n-1\) 次 \((S=\{1\},T=\{ ...
- Codeforces 280C Game on tree【概率DP】
Codeforces 280C Game on tree LINK 题目大意:给你一棵树,1号节点是根,每次等概率选择没有被染黑的一个节点染黑其所有子树中的节点,问染黑所有节点的期望次数 #inclu ...
- Codeforces A. Game on Tree(期望dfs)
题目描述: Game on Tree time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Codeforces Round #781(C. Tree Infection)
Codeforces Round #781 C. Tree Infection time limit per test 1 second memory limit per test 256 megab ...
- Codeforces 734E. Anton and Tree 搜索
E. Anton and Tree time limit per test: 3 seconds memory limit per test :256 megabytes input:standard ...
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
随机推荐
- HDU1024_Max Sum Plus Plus【滚动数组】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Vim 复制粘贴探秘
Vim作为最好用的文本编辑器之一,使用vim来编文档,写代码实在是很惬意的事情.每当学会了vim的一个新功能,就会很大地提高工作效率.有人使用vim几十年,还没有完全掌握vim的功能,这也说明了vim ...
- 移植DirectFB于SOC3210(龙芯)【转】
本文转载自:http://blog.chinaunix.net/uid-25298908-id-120188.html 编译平台:龙芯.中标普华Linux桌面5 目标平台:SOC3210 一.获取源码 ...
- 【POJ 3740】 Easy Finding
[题目链接] http://poj.org/problem?id=3740 [算法] Dancing Links算法解精确覆盖问题 详见这篇文章 : https://www.cnblogs.com/g ...
- 通过Ajax和SpringBoot交互的示例
转自:https://blog.csdn.net/oppo5630/article/details/52093898/
- PCB SLOT槽孔数量计算方法,同CAM350孔数一致 实现方法
最近有好几个写脚本的朋友问我,SLOT槽孔孔的如何计算的,要求孔数与CAM350孔数保持一致. 前几年通过在CAM350里面不断测试,结果是:CAM 350中SLOT槽孔,孔与孔之间最高位,凸位高度值 ...
- php文件,文件夹
例子代码:<?php$f='/www/htdocs/index.html';$path_parts = pathinfo($f);echo $path_parts['dirname'], &qu ...
- tp3.2 复合查询or
tp3.2 复合查询or $where['goods_name'] = array("like","%$q%");$where['goods_sn'] = ar ...
- SpringMVC参数绑定(二)
在springMVC中,提交请求的数据是通过方法形参来接收的,从客户端请求的key/value数据,经过参数绑定,将key/value数据绑定到controller形参上,然后再controller就 ...
- CSS选择器优先级计算
优先级从高到低排列,浏览器优先满足前面的规则 1,!important优先级最高 2,内联样式 3,作者>读者>浏览器 4,优先级权重加法 id选择器+100/个 类/伪类选择器+10/个 ...