Tensorflow MNIST浅层神经网络的解释和答复
本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/51416540
看到之前的一篇博文:深入MNIST code测试,接连有读者发问,关于其中的一些细节问题,这里进行简单的答复。
Tensorflow中提供的示例中MNIST网络结构比较简单,属于浅层的神经网络,只有两个卷积层和全连接层,我按照Caffe的网络结构绘制一个模型流程:
再附上每一层的具体参数网络(依旧仿照caffe的模式):
现在再来解释一些读着的疑问:
- 在卷积层 - conv1和- conv2中的- 32/64是什么,怎么来的?这里它们指的其实就是卷积核的数量,这里卷积核设置参数为- [5,5,1,32], strides=[1,1,1,1], padding='SAME',分别解释一下:- [5,5,1,32]:卷积核为5x5的窗口,因为输入图像是一通道灰度图像,所以第三参数为- 1,使用彩色图像时,一般设置为- 3,最后- 32就是指卷积核的数量,为什么要使用这么多卷积核呢?我理解的是,每种卷积只对某些特征敏感,获取的特征很有限,因此将多种不同的卷积核分别对图像进行处理,就能获得更多的特征。每个卷积核按照规则扫描完图像后,就输出一张特征图像(feature map),因此- 32也指输出的特征图。
- strides=[1,1,1,1]:指卷积窗口的滑动方式,这里是指逐像素滑动。
- padding='SAME':所谓的- padding是为了解决图像边缘部分的像素,很容易想象,当卷积窗口不是一个像素大小时,图像边缘的部分区域是不能覆盖的(或者说卷积窗口覆盖该像素时,部分窗口已经位于图像区域以外了),很简单的做法是先将图像的拓展一下,使得位于边缘区域的像素也能进行卷积。- SAME就是一种- padding方法,即图像向四周拓展- kernel_width/2和- kernel_height/2个像素。那么这里输出的特征图像的大小就为:- 28x28x32。
- 同理[5,5,32,64]可以理解。
 
- 关于 - batch大小,我也没有深入了解过,浅显的理解为:训练样本有几万张,如果一起进行结算,其中的矩阵太过庞大,对于计算机来讲非常有压力,所以分批进行,这里的- 50就是指每一批的训练子数据的大小。至于训练20000次,是否会导致同一个样本的重复训练?答案是绝对的,机器学习中,有bagging,random forests中有提到这方面的知识,想了解的话,可以自己阅读相关论文。
- 关于训练中准确度反复的现象,这是在正常不过的,要真正理解,首先需要自行补习关于梯度下降算法的原理(这里不详细介绍),一般来讲,我们希望优化算法在最少步骤下收敛到理想的结果,但是难点在于如何在每一步优化的过程中提供最优的学习率,简单的做法是给定固定的”学习率“,例如这里设置的学习率是 - 1e-3,这样做虽然不能保证每一步的优化是最优的,但是从大量的训练测试来看,整体趋势是朝着我们所想要的方向。最后附上一张图:
- 关于dropout,是为了避免神经网络训练过程中由于数据样本的不足,导致的过拟合问题。推荐阅读论文:Dropout: A Simple Way to Prevent Neural Networks from Overfitting
解释的比较简单,有不准确的地方请指正,希望能帮到有疑惑的读者,如有其它疑惑,大家一起探讨。
Tensorflow MNIST浅层神经网络的解释和答复的更多相关文章
- tensorFlow(四)浅层神经网络
		tensorFlow见基础 实验 MNIST数据集介绍 MNIST是一个手写阿拉伯数字的数据集. 其中包含有60000个已经标注了的训练集,还有10000个用于测试的测试集. 本次实验的任务就是通过手 ... 
- Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 3. 浅层神经网络)
		=================第3周 浅层神经网络=============== ===3..1 神经网络概览=== ===3.2 神经网络表示=== ===3.3 计算神经网络的输出== ... 
- deeplearning.ai 神经网络和深度学习 week3 浅层神经网络 听课笔记
		1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ... 
- deeplearning.ai 神经网络和深度学习 week3 浅层神经网络
		1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ... 
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记
		第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[ 
- 矩池云 | 搭建浅层神经网络"Hello world"
		作为图像识别与机器视觉界的 "hello world!" ,MNIST ("Modified National Institute of Standards and Te ... 
- [DeeplearningAI笔记]神经网络与深度学习3.2_3.11(激活函数)浅层神经网络
		觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为 ... 
- ng-深度学习-课程笔记-4: 浅层神经网络(Week3)
		1 神经网络概览( Neural Networks Overview ) 先来快速过一遍如何实现神经网络. 首先需要输入特征x,参数w和b,计算出z,然后用激活函数计算出a,在神经网络中我们要做多次这 ... 
- 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
		基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ... 
随机推荐
- 编码格式(UTF-8 与 ANSI)各种编码解码(encode、decode)
			Windows:默认为 ANSI,记事本程序另存为处,可以设置其他编码格式: Ubuntu:默认为 UTF-8 1. ANSI ANSI 编码表示英文字符时用一个字节,表示中文用两个或四个字节 -- ... 
- 【关键字】volatile
			volatile 修饰的关键字,确保编译器不对成员变量进行任何优化: private volatile double d; // No optimization 
- 开发PL/SQL子程序和包及使用PL/SQL编写触发器、在JDBC中应用Oracle
			1. 子程序的各个部分: 声明部分.可执行部分.异常处理部分(可选) 2.子程序的分类: A. 过程 - 执行某些操作 a. 创建过程的语法: CREATE [OR REPLACE] PROC ... 
- SmartDispatcher 类
			UI线程中使用 public class SmartDispatcher { public static void BeginInvoke(Action action) { if (Deploymen ... 
- 47. Ext.form.Field.prototype.msgTarget
			转自:https://blog.csdn.net/a1542aa/article/details/24295791 ExtJS.form中msgTarget Ext表单提示方式:msgTarget:有 ... 
- PCB MS SQL 存储过程(CLR) 实现Json转DataTable表的方法
			一.准备需转为DataTable的json字符串 原json字符串数据 [{"TechName":"ECN","TechNo":" ... 
- bzoj1992鬼谷子的钱袋(二分乱搞 二进制)
			1192: [HNOI2006]鬼谷子的钱袋 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3223 Solved: 2333 Descriptio ... 
- [Swift通天遁地]七、数据与安全-(17)使用Swift实现原生的3DES加密和解密
			★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ... 
- centos7离线安装rabbitmq
			准备工作 一台centos7的机器 erlang-21.3.8.2 RabbitMQ 3.7.15 socat-1.7.3.2-2.el7.x86_64.rpm 开始安装 登录centos ,把上面的 ... 
- centos安装 memcached
			.安装 yum -y update yum install -y libevent libevent-devel yum install -y memcached 2.配置 vi /etc/sysco ... 
