BZOJ 1877 拆点费用流
思路:
呃 水题不解释 行么,,
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
const int N=,M=;
int n,m,xx,yy,zz,edge[N],cost[N],v[N],next[N],first[M];
int with[M],vis[M],minn[M],dis[M],tot,ans1,ans2;
void Add(int x,int y,int C,int E){edge[tot]=E,cost[tot]=C,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int C,int E){Add(x,y,C,E),Add(y,x,-C,);}
bool tell(){
mem(vis,),mem(minn,0x3f),mem(dis,0x3f);
queue<int>q;q.push(),dis[]=;
while(!q.empty()){
int t=q.front();q.pop(),vis[t]=;
for(int i=first[t];~i;i=next[i])
if(dis[v[i]]>dis[t]+cost[i]&&edge[i]){
dis[v[i]]=dis[t]+cost[i],minn[v[i]]=min(minn[t],edge[i]),with[v[i]]=i;
if(!vis[v[i]])vis[v[i]]=,q.push(v[i]);
}
}return dis[n*]!=0x3f3f3f3f;
}
void zeng(){
for(int i=*n;i^;i=v[with[i]^])edge[with[i]]-=minn[n*],edge[with[i]^]+=minn[n*];
ans1+=minn[n*],ans2+=dis[n*]*minn[n*];
}
int main(){
mem(first,-),scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&xx,&yy,&zz);
add(xx+n,yy,zz,);
}
for(int i=;i<n;i++)add(i,i+n,,);
add(,n+,,M),add(n,*n,,M);
while(tell())zeng();
printf("%d %d\n",ans1,ans2);
}
BZOJ 1877 拆点费用流的更多相关文章
- BZOJ 1070 拆点 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 5860 Solved: 2487[Submit][Status] ...
- BZOJ 1877 晨跑 拆点费用流
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...
- [bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...
- CF 277E Binary Tree on Plane (拆点 + 费用流) (KM也可做)
题目大意: 平面上有n个点,两两不同.现在给出二叉树的定义,要求树边一定是从上指向下,即从y坐标大的点指向小的点,并且每个结点至多有两个儿子.现在让你求给出的这些点是否能构成一棵二叉树,如果能,使二叉 ...
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
- HDU 4780 Candy Factory(拆点费用流)
Problem Description A new candy factory opens in pku-town. The factory import M machines to produc ...
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
- BZOJ 1070 修车 【费用流】
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...
- BZOJ 1930 吃豆豆(费用流)
首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...
随机推荐
- CentOS下使用yum安装配置和使用svn
安装说明 系统环境:CentOS-6.3安装方式:yum install (源码安装容易产生版本兼容的问题)安装软件:系统自动下载SVN软件 检查已安装版本 ? 1 2 3 4 5 6 7 8 9 1 ...
- CentOS6.9下NFS配置说明(转载)
NFS是Network File System的缩写,即网络文件系统.它的主要功能是通过网络(一般是局域网)让不同的主机系统之间可以共享文件或目录.NFS客户端可以通过挂载(mount)的方式将NFS ...
- 初级模拟电路:3-1 BJT概述
回到目录 1. 名称由来 BJT的全称是双极性结型晶体管(Bipolar Junction Transistor),国内俗称三极管.其实,在英语中,三极管(triode)特指以前的真空电子管形式的 ...
- 基础:Post和Get区别
1.get是从服务器上获取数据,post是向服务器传送数据.2.在客户端, get方式在通过URL提交数据,数据在URL中可以看到:post方式,数据放置在HTML HEADER内提交3.对于get方 ...
- Day 11 文件和异常
文件和异常 在实际开发中,常常需要对程序中的数据进行持久化操作,而实现数据持久化最直接简单的方式就是将数据保存到文件中.说到“文件”这个词,可能需要先科普一下关于文件系统的知识,对于这个概念,维基百科 ...
- git学习(1)
一.git fetch 和git pull 的差别 1.git fetch 相当于是从远程获取最新到本地,不会自动merge,如下指令: git fetch orgin master //将远程仓库的 ...
- kesci---2019大数据挑战赛预选赛---情感分析
一.预选赛题------文本情感分类模型 本预选赛要求选手建立文本情感分类模型,选手用训练好的模型对测试集中的文本情感进行预测,判断其情感为「Negative」或者「Positive」.所提交的结果按 ...
- linux安装openjdk
使用yum查找jdk: yum search java | grep jdk 执行安装命令:yum install java-1.8.0-openjdk
- Vue.js:使用vue-cli快速构建项目
vue-cli是什么? vue-cli 是vue.js的脚手架,用于自动生成vue.js模板工程的. vue-cli怎么使用? 安装vue-cli之前,需要先安装了vue和webpack,不知道怎么安 ...
- linux修改mysql表结构
增加字段: alter table [tablename] add [字段名] [字段类型] first(首位); alter table [tablename] add [字段名] [字段类型] a ...