Description

Input

一行,一个由小写字母组成的字符串S,长度不超过10^5

Output

L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长.

Sample Input

agoodcookcooksgoodfood

Sample Output

1
2
3
3
2
2
3
3
2
2
3
3
2
1
2
3
3
2
1
2
3
4

解题思路:

思考一个最小识别串会带来什么。

在它内部的点的答案就是这个串的长度,而在它外面的点需要拓展到这个串的端点。

首先,一个Parent树内的节点对应子串是唯一识别的,那么其|Right|必定=1,那么对应一个|Right|=1的节点

因为Parent树上的节点是其子节点的后缀,而Parent树是逆序的,所以一棵|Right|=1的子树内结尾是一定的,设为endpos。

那么在一个|Right|=1的节点内其有效压缩长度为len-len[fa],那么这段子串可以认为是等价唯一的。其长度为其到endpos的距离。

而在len[fa]以下的,识别长度太小必须使用len[fa]为最小识别长度。

区间修改当然要线段树了。

len[fa]~len区间内,其答案为endpos-pos+1

1~len[fa]区间内,其答案为len[fa]

pos是与位置有关的变量最后算。

只需将endpos-1,len[fa]推入线段树好了

代码:

(不要问我为什么上次拓扑这次建边因为我闲的)

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define lll spc<<1
#define rrr spc<<1|1
struct sant{
int tranc[];
int len;
int pre;
}s[];
struct pnt{
int hd;
int wgt;
int endp;
}p[];
struct ent{
int twd;
int lst;
}e[];
struct trnt{
int minval;
int lzt;
bool al;
};
int cnt;
int siz;
int fin;
int n;
char tmp[];
class Sgmt_tree{
public:
void res(void)
{
for(int i=;i<;i++)
tr[i].lzt=tr[i].minval=0x3f3f3f3f;
return ;
}
void pushup(int spc)
{
tr[spc].minval=std::min(tr[lll].minval,tr[rrr].minval);
return ;
}
void Add(int spc,int x)
{
tr[spc].minval=std::min(tr[spc].minval,x);
tr[spc].lzt=std::min(tr[spc].lzt,x);
tr[spc].al=true;
return ;
}
void pushdown(int spc)
{
if(tr[spc].al)
{
Add(lll,tr[spc].lzt);
Add(rrr,tr[spc].lzt);
tr[spc].al=false;
}
return ;
}
void update(int l,int r,int ll,int rr,int spc,int v)
{
if(l>rr||ll>r)
return ;
if(ll<=l&&r<=rr)
{
Add(spc,v);
return ;
}
int mid=(l+r)>>;
pushdown(spc);
update(l,mid,ll,rr,lll,v);
update(mid+,r,ll,rr,rrr,v);
pushup(spc);
return ;
}
int query(int l,int r,int pos,int spc)
{
if(l==r)
return tr[spc].minval;
int mid=(l+r)>>;
pushdown(spc);
if(pos<=mid)
return query(l,mid,pos,lll);
else
return query(mid+,r,pos,rrr);
}
private:
trnt tr[];
}T[];
void Insert(int c,int w)
{
int nwp,nwq,lsq,lsp;
nwp=++siz;
p[nwp].wgt=;
p[nwp].endp=w;
s[nwp].len=s[fin].len+;
for(lsp=fin;lsp&&!s[lsp].tranc[c];lsp=s[lsp].pre)
s[lsp].tranc[c]=nwp;
if(!s[lsp].tranc[c])
s[lsp].tranc[c]=nwp;
else{
lsq=s[lsp].tranc[c];
if(s[lsq].len==s[lsp].len+)
s[nwp].pre=lsq;
else{
nwq=++siz;
s[nwq]=s[lsq];
s[nwq].len=s[lsp].len+;
s[nwp].pre=s[lsq].pre=nwq;
while(s[lsp].tranc[c]==lsq)
{
s[lsp].tranc[c]=nwq;
lsp=s[lsp].pre;
}
}
}
fin=nwp;
return ;
}
void ade(int f,int t)
{
cnt++;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
return ;
}
void Dfs(int x)
{
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
Dfs(to);
p[x].wgt+=p[to].wgt;
p[x].endp=std::min(p[x].endp,p[to].endp);
}
if(p[x].wgt==)
{
int minlen=s[s[x].pre].len+;
int maxlen=s[x].len;
int endpos=p[x].endp;
T[].update(,n,endpos-maxlen+,endpos-minlen+,,endpos+);
T[].update(,n,endpos-minlen+,endpos,,minlen);
}
return ;
}
int main()
{
scanf("%s",tmp+);
n=strlen(tmp+);
for(int i=;i<=n;i++)
Insert(tmp[i]-'a',i);
for(int i=;i<=siz;i++)
ade(s[i].pre,i);
T[].res();
T[].res();
Dfs();
for(int i=;i<=n;i++)
{
int ans1,ans2;
ans1=T[].query(,n,i,)-i;
ans2=T[].query(,n,i,);
printf("%d\n",std::min(ans1,ans2));
}
return ;
}

BZOJ1396: 识别子串(后缀自动机,线段树)的更多相关文章

  1. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  2. 【BZOJ1396】识别子串 - 后缀自动机+线段树

    题意: Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. 题解: ...

  3. bzoj1396&&2865 识别子串 后缀自动机+线段树

    Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample Input agoodco ...

  4. BZOJ 1396&&2865 识别子串[后缀自动机 线段树]

    Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...

  5. BZOJ 1396 识别子串 (后缀自动机+线段树)

    题目大意: 给你一个字符串S,求关于每个位置x的识别串T的最短长度,T必须满足覆盖x,且T在S中仅出现一次 神题 以节点x为结尾的识别串,必须满足它在$parent$树的子树中只有一个$endpos$ ...

  6. bzoj 1396/2865: 识别子串 后缀自动机+线段树

    水水的字符串题 ~ #include <map> #include <cstdio> #include <cstring> #include <algorit ...

  7. BZOJ 1396: 识别子串( 后缀数组 + 线段树 )

    这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...

  8. BZOJ1396 识别子串 字符串 SAM 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/9004467.html 题目传送门 - BZOJ1396 题意 给定一个字符串$s$,$|s|\leq 10^5$ ...

  9. 2018.12.23 bzoj2865&&1396: 字符串识别(后缀自动机+线段树)

    传送门 卡空间差评! 题意简述:给一个字串,对于每个位置求出经过这个位置且只在字串中出现一次的子串的长度的最小值. 解法:先建出samsamsam,显然只有当sizep=1size_p=1sizep​ ...

  10. bzoj1396识别子串(SAM+线段树)

    复习SAM板子啦!考前刷水有益身心健康当然这不是板子题/水题…… 很容易发现只在i位置出现的串一定是个前缀串.那么对答案的贡献分成两部分:一部分是len[x]-fa~len[x]的这部分贡献会是r-l ...

随机推荐

  1. 什么是 &quot;署名-非商业性使用-同样方式共享&quot;

    什么是 "署名-非商业性使用-同样方式共享" 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致& ...

  2. spring-cloud-netflix集成的服务

    1.Ribbon Ribbon is a client side IPC library that is battle-tested in cloud. It provides the followi ...

  3. Linq中where查询

    Linq的Where操作包括3种形式:简单形式.关系条件形式.First()形式. 1.简单形式: 例:使用where查询在北京的客户 var q = from c in db.Customers   ...

  4. SQL语句查询数据库所有表和所有字段的详细信息(包括表描述和字段描述)

    select (case then ddd.value else '' end ) as "表名(中文)" --如果表名相同就返回空 , (case then d.name els ...

  5. JS的解析与执行过程—函数预处理

    声明:之所以分为全局预处理与函数预处理,只是为了理解方便,其实在实际运行中二者是不分先后的. 函数预处理阶段与全局预处理的差别: 函数每调用一次,就会产生一个LexicalEnviroment对象,在 ...

  6. 使用 HTML5 canvas制作拾色器

    自制的拾色器漂亮吧,哈哈 废话不多说直接上代码,希望可以帮到需要的朋友 <html><head>    <style>        .canvas_color{p ...

  7. ios程序启动过程和UIWidnow介绍

    一.iOS程序的完整启动过程(有storyboard) 1.先执行main函数,main内部会调用UIApplicationMain函数 2.UIApplicationMain函数里面做了什么事情: ...

  8. (七十一)关于UITableView退出崩溃的问题和滚动究竟部的方法

    [TableView退出崩溃的问题] 近期在使用TableView时偶然发如今TableView中数据较多时,假设在滚动过程中退出TableView到上一界面.会引起程序的崩溃.经过网上查阅和思考我发 ...

  9. ElasticSearch 架构图

    ElasticSearch 架构图 从下往上来分析ElasticSearch 架构图 Gateway代表ElasticSearch索引的持久化存储方式. 在Gateway中,ElasticSearch ...

  10. Qwt库的一个使用注意事项

    作者:朱金灿 来源:http://blog.csdn.net/clever101 一般debug版本的程序链接release版本的库是没有问题的.今天使用debug版本程序链接release版本的qw ...