思路:

题目让求的是 Σgcd(i,j) (i<=n,j<=m) n,m不同 没法线性筛

怎么办?

容斥原理!!

f[x]表示gcd(i,j)=x的个数

g[x]为 存在公约数=x 的数对(i,j)的个数

g(x)=(n/x)*(m/x)

那么f[x]就是 g(x)-f(2*x)-f(3*x)-…… -f(i*x) (i*x<=min(n,m))

从后往前算 (这个显然吧 要不怎么减)

Σf(x)*2 -n*m就是答案啦~~

复杂度的话嘛

O(n)+O(n/2)+O(n/3)…..+O(n/i)=O(nlogn)

//By SiriusRen
#include <cstdio>
using namespace std;
#define int long long
int f[100050],ans;
signed main(){
int n,m,mx;
scanf("%lld%lld",&n,&m),mx=n<m?n:m;
for(int i=mx;i;i--){
f[i]=(n/i)*(m/i);
for(int j=2;i*j<=mx;j++)
f[i]-=f[i*j];
ans+=f[i]*2*i;
}
printf("%lld\n",ans-(long long)n*m);
}

BZOJ 2005 容斥原理的更多相关文章

  1. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

  2. BZOJ 2045 容斥原理

    思路: 同BZOJ 2005 http://blog.csdn.net/qq_31785871/article/details/54314774 //By SiriusRen #include < ...

  3. [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...

  4. 【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理

    这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)× ...

  5. BZOJ 2005 能量采集(容斥原理)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2005 题意:给定n和m,求 思路:本题主要是解决对于给定的t,有多少对(i,j)满足x= ...

  6. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  7. BZOJ 2005 2005: [Noi2010]能量采集 | 容斥原理

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: http://blog.csdn.net/popoqqq/article/de ...

  8. BZOJ 2005 NOI2010 能量採集 数论+容斥原理

    题目大意:给定n和m.求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1 i和j的限制不同,传统的线性筛法失效了.这里我们考虑容斥原理 令f[x]为GCD(i, ...

  9. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

随机推荐

  1. Java-MyBatis:MyBatis 3 入门

    ylbtech-Java-MyBatis:MyBatis 3 入门 1.返回顶部 1. 入门 安装 要使用 MyBatis, 只需将 mybatis-x.x.x.jar 文件置于 classpath ...

  2. UIPickerView的自定义视图

    UIPickerView允许开发者对列表项进行任意定制 开发者只要实现UIPickerViewDelegate协议中的-pickerView:viewForRow:forComponent: reus ...

  3. View的呈现(二)加载流程

    这块涉及到Code+Razor模板=>html[output流] 而这块的问题在于Razor最后生成了什么?--对象:一个类文件:eg:index.cshtml  => index_cst ...

  4. javaweb 之 文件上传与下载

    1.文件上传的原理分析 1.1文件上传的必要前提: a.提供form表单,method必须是post b.form表单的enctype必须是multipart/form-data c.提供input ...

  5. Excel基础视频教程在线观看

    也许你已经在Excel中完成过上百张财务报表,也许你已利用Excel函数实现过上千次的复杂运算,也许你认为Excel也不过如此,甚至了无新意.但我们平日里无数次重复的得心应手的使用方法只不过是Exce ...

  6. JavaScript中必记英语单词及含义

    reflow[ri'flo]:回流,重构(通过css改变页面的结构,比如一行元素,其中一个元素的高改变了,那么其他元素的位置也都会改变) repaint['ripent]:重绘(只改变页面的样式,比如 ...

  7. day06-2 基本运算符(解压缩)

    目录 运算符 算数运算符 比较运算符 赋值运算符 逻辑运算符 运算规则 成员运算符 身份运算符 Python运算符优先级 链式赋值(必考) 交叉赋值(必考) 解压缩(必考) 运算符 算数运算符 进行算 ...

  8. Python介绍与学习

    Python是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年. Python是纯粹的自由软件, 源代码和解释器CPy ...

  9. [luogu 2568] GCD (欧拉函数)

    题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入样例#1: 4 输出样例#1: 4 ...

  10. java EE使用response返回中文时,出现乱码问题

    response.setHeader("content-type", "text/html;charset=UTF-8");