BZOJ 2005 容斥原理
思路:
题目让求的是 Σgcd(i,j) (i<=n,j<=m) n,m不同 没法线性筛
怎么办?
容斥原理!!
f[x]表示gcd(i,j)=x的个数
g[x]为 存在公约数=x 的数对(i,j)的个数
g(x)=(n/x)*(m/x)
那么f[x]就是 g(x)-f(2*x)-f(3*x)-…… -f(i*x) (i*x<=min(n,m))
从后往前算 (这个显然吧 要不怎么减)
Σf(x)*2 -n*m就是答案啦~~
复杂度的话嘛
O(n)+O(n/2)+O(n/3)…..+O(n/i)=O(nlogn)
//By SiriusRen
#include <cstdio>
using namespace std;
#define int long long
int f[100050],ans;
signed main(){
int n,m,mx;
scanf("%lld%lld",&n,&m),mx=n<m?n:m;
for(int i=mx;i;i--){
f[i]=(n/i)*(m/i);
for(int j=2;i*j<=mx;j++)
f[i]-=f[i*j];
ans+=f[i]*2*i;
}
printf("%lld\n",ans-(long long)n*m);
}
BZOJ 2005 容斥原理的更多相关文章
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- BZOJ 2045 容斥原理
思路: 同BZOJ 2005 http://blog.csdn.net/qq_31785871/article/details/54314774 //By SiriusRen #include < ...
- [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...
- 【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理
这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)× ...
- BZOJ 2005 能量采集(容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2005 题意:给定n和m,求 思路:本题主要是解决对于给定的t,有多少对(i,j)满足x= ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- BZOJ 2005 2005: [Noi2010]能量采集 | 容斥原理
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: http://blog.csdn.net/popoqqq/article/de ...
- BZOJ 2005 NOI2010 能量採集 数论+容斥原理
题目大意:给定n和m.求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1 i和j的限制不同,传统的线性筛法失效了.这里我们考虑容斥原理 令f[x]为GCD(i, ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
随机推荐
- Oracle实例和Oracle数据库(Oracle体系结构)---转载
对于初接触Oracle 数据库的人来讲,很容易混淆的两个概念即是Oracle 实例和Oracle 数据库.这两 概念不同于SQL sever下的实例与数据库,当然也有些相似之处.只是在SQL serv ...
- DBS-Oracle:表的连接查询
ylbtech-DBS-Oracle:表的连接查询 链接查询是指基于两个或两个以上表或试图的查询.在实际应用中,查询单个表可能无法满足应用程序的实际需求(例如显示雇员的部门名称以及雇员名),在这种情况 ...
- ASP.NET Core-组件-后台任务:Hangfire
ylbtech-ASP.NET Core-组件-后台任务:Hangfire Hangfire作为一款高人气且容易上手的分布式后台执行服务,支持多种数据库.在.net core的环境中,由Core自带的 ...
- 利用JDBC或者事物或者调用存储过程实现往MySQL插入百万级数据
转自:http://www.cnblogs.com/fnz0/p/5713102.html 想往某个表中插入几百万条数据做下测试, 原先的想法,直接写个循环10W次随便插入点数据试试吧,好吧,我真的很 ...
- POJ 2446 匈牙利算法
题意: 思路: 二分图匹配... // by SiriusRen #include <cmath> #include <cstdio> #include <cstring ...
- 使用 async/ await 进行 异步 编程
一.异步函数 异步函数概念. 通常 是 指用 async 修饰 符 声明 的, 可 包含 await 表达式 的 方法 或 匿名 函数 1. 从 语言 的 视角 来看, 这些 await 表达式 正是 ...
- Asp.net mvc中使用配置Unity
第一步:添加unity.mvc 第二步:在添加之后会在app_start中生成UnityConfig.cs,UnityMvcActivator.cs 第三步:使用 第四步:效果展示
- 详解循环神经网络(Recurrent Neural Network)
本文结构: 模型 训练算法 基于 RNN 的语言模型例子 代码实现 1. 模型 和全连接网络的区别 更细致到向量级的连接图 为什么循环神经网络可以往前看任意多个输入值 循环神经网络种类繁多,今天只看最 ...
- SQL Server 检测到基于一致性的逻辑 I/O 错误
背景:新建DB_GZN 恢复数据库备份文件 执行: select * from VI_MPS_PAPLT 错误提示: 消息 824,级别 24,状态 2,第 2 行 SQL Serv ...
- 从DataTable高效率导出数据到Excel
首先从数据库读取数据到DataTable,这我就不提了,大家都明白.下面直接介绍如何从DataTable高效率导出数据到Excel中的方法,代码如下: using Microsoft.Office.I ...