Spark详解(02) - Spark概述

什么是Spark

Hadoop主要解决,海量数据的存储和海量数据的分析计算。

Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

Hadoop与Spark历史

Hadoop的Yarn框架比Spark框架诞生的晚,所以Spark自己也设计了一套资源调度框架。

Hadoop与Spark框架对比

Spark内置模块

Spark Core:实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。Spark Core中还包含了对弹性分布式数据集(Resilient Distributed DataSet,简称RDD)的API定义。

Spark SQL:是Spark用来操作结构化数据的程序包。通过Spark SQL,我们可以使用 SQL或者Apache Hive版本的HQL来查询数据。Spark SQL支持多种数据源,比如Hive表、Parquet以及JSON等。

Spark Streaming:是Spark提供的对实时数据进行流式计算的组件。提供了用来操作数据流的API,并且与Spark Core中的 RDD API高度对应。

Spark MLlib:提供常见的机器学习功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据
导入等额外的支持功能。

Spark GraphX:主要用于图形并行计算和图挖掘系统的组件。

集群管理器:Spark设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。为了实现这样的要求,同时获得最大灵活性,Spark支持在各种集群管理器(Cluster Manager)上运行,包括Hadoop YARN、Apache Mesos,以及Spark自带的一个简易调度器,叫作独立调度器。

Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

Spark特点

1)快:与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。计算的中间结果是存在于内存中的。

2)易用:Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的Shell,可以非常方便地在这些Shell中使用Spark集群来验证解决问题的方法。

3)通用:Spark提供了统一的解决方案。Spark可以用于,交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。减少了开发和维护的人力成本和部署平台的物力成本。

4)兼容性:Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。

Spark运行架构

运行架构

Spark框架的核心是一个计算引擎,整体来说,它采用了标准 master-slave 的结构。

如下图所示,它展示了一个 Spark执行时的基本结构。图形中的Driver表示master,负责管理整个集群中的作业任务调度。图形中的Executor 则是 slave,负责实际执行任务。

核心组件

Driver和Executor任务的管理者

Driver和Executor是临时程序,当有具体任务提交到Spark集群才会开启的程序。

  • Driver

Spark驱动器节点,用于执行Spark任务中的main方法,负责实际代码的执行工作。Driver在Spark作业执行时主要负责:

将用户程序转化为作业(job)

在Executor之间调度任务(task)

跟踪Executor的执行情况

通过UI展示查询运行情况

实际上,我们无法准确地描述Driver的定义,因为在整个的编程过程中没有看到任何有关Driver的字眼。所以简单理解,所谓的Driver就是驱使整个应用运行起来的程序,也称之为Driver类。

  • Executor

Spark Executor是集群中工作节点(Worker)中的一个JVM进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。

Executor有两个核心功能:

负责运行组成Spark应用的任务,并将结果返回给驱动器进程

它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

Master和Worker 集群资源管理

Spark集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master和Worker,这里的Master是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于Yarn环境中的RM, 而Worker呢,也是进程,一个Worker运行在集群中的一台服务器上,由Master分配资源对数据进行并行的处理和计算,类似于Yarn环境中NM。

Master:Spark特有资源调度系统的Leader。掌管着整个集群的资源信息,类似于Yarn框架中的ResourceManager。

Worker: Spark特有资源调度系统的Slave,有多个。每个Slave掌管着所在节点的资源信息,类似于Yarn框架中的NodeManager。

Master和Worker是Spark的守护进程、集群资源管理者,即Spark在特定模式下正常运行所必须的进程。

ApplicationMaster

Hadoop用户向YARN集群提交应用程序时,提交程序中应该包含ApplicationMaster,用于向资源调度器申请执行任务的资源容器Container,运行用户自己的程序任务job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。

说的简单点就是,ResourceManager(资源)和Driver(计算)之间的解耦合靠的就是ApplicationMaster。

核心概念

Executor与Core(核)

Spark Executor是集群中运行在工作节点(Worker)中的一个JVM进程,是整个集群中的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点Executor的内存大小和使用的虚拟CPU核(Core)数量。

应用程序相关启动参数如下:

名称

说明

--num-executors

配置Executor的数量

--executor-memory

配置每个Executor的内存大小

--executor-cores

配置每个Executor的虚拟CPU core数量

并行度(Parallelism)

在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。

有向无环图(DAG)

大数据计算引擎框架我们根据使用方式的不同一般会分为四类,其中第一类就是Hadoop所承载的MapReduce,它将计算分为两个阶段,分别为 Map阶段 和 Reduce阶段。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。 由于这样的弊端,催生了支持 DAG 框架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的 Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及实时计算。

这里所谓的有向无环图,并不是真正意义的图形,而是由Spark程序直接映射成的数据流的高级抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,这样更直观,更便于理解,可以用于表示程序的拓扑结构。

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。

提交流程

所谓的提交流程,其实就是开发人员根据需求写的应用程序通过Spark客户端提交给Spark运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,这里不进行详细的比较,但是因为国内工作中,将Spark引用部署到Yarn环境中会更多一些,所以本文的提交流程是基于Yarn环境的。

Spark应用程序提交到Yarn环境中执行的时候,一般会有两种部署执行的方式:Client和Cluster。两种模式主要区别在于:Driver程序的运行节点位置。

Yarn Client模式

Client模式将用于监控和调度的Driver模块在客户端执行,而不是在Yarn中,所以一般用于测试。

Driver在任务提交的本地机器上运行

Driver启动后会和ResourceManager通讯申请启动ApplicationMaster

ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,负责向ResourceManager申请Executor内存

ResourceManager接到ApplicationMaster的资源申请后会分配container,然后ApplicationMaster在资源分配指定的NodeManager上启动Executor进程

Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数

之后执行到Action算子时,触发一个Job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

Yarn Cluster模式

Cluster模式将用于监控和调度的Driver模块启动在Yarn集群资源中执行。一般应用于实际生产环境。

在YARN Cluster模式下,任务提交后会和ResourceManager通讯申请启动ApplicationMaster,

随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster就是Driver。

Driver启动后向ResourceManager申请Executor内存,ResourceManager接到ApplicationMaster的资源申请后会分配container,然后在合适的NodeManager上启动Executor进程

Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数,

之后执行到Action算子时,触发一个Job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

Spark详解(02) - Spark概述的更多相关文章

  1. HTTP 权威指南 详解 ( 一、概述 )

    HTTP 权威指南 详解 ( 一.概述 ) 最近在解读 <http权威指南> 这本书.之前对于http 的理解仅限于 知道我需要向服务端发送一个 get or post 请求,然后等待服务 ...

  2. Spark详解

    原文连接 http://xiguada.org/spark/ Spark概述 当前,MapReduce编程模型已经成为主流的分布式编程模型,它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的 ...

  3. TCP/IP详解学习笔记- 概述

    TCP/IP详解学习笔记(1)-- 概述1.TCP/IP的分层结构      网络协议通常分不同层次进行开发,每一层分别负责不同的同信功能.TCP/IP通常被认为是一个四层协议系统.      如图所 ...

  4. Linux用户、用户组权限管理详解 --- 02

    2,用户.用户组管理操作详解: 2.1 adduser 添加用户: adduser [-u uid][-g group][-d home][-s shell] -u:直接给出userID        ...

  5. Scala高手实战****第20课:Scala提取器、注解深度实战详解及Spark源码鉴赏

    Spark中的源码的提取器和注解 @SparkContext.scala @ volatile 线程专用 保证线程间共享内容的一致性 @volatile private var _dagSchedul ...

  6. spark——详解rdd常用的转化和行动操作

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark第三篇文章,我们继续来看RDD的一些操作. 我们前文说道在spark当中RDD的操作可以分为两种,一种是转化操作(trans ...

  7. Web服务器项目详解 - 00 项目概述

    目录 00 项目概述 01 线程同步机制包装类 02 半同步/半反应堆线程池(上) 03 半同步/半反应堆线程池(下) 04 http连接处理(上) 05 http连接处理(中) 06 http连接处 ...

  8. 翻译「C++ Rvalue References Explained」C++右值引用详解 Part1:概述

    本文系对「C++ Rvalue References Explained」 该文的翻译,原文作者:Thomas Becker. 该文较详细的解释了C++11右值引用的作用和出现的意义,也同时被Scot ...

  9. Android Loader详解一:概述

    装载器从android3.0开始引进.它使得在activity或fragment中异步加载数据变得简单.装载器具有如下特性: 它们对每个Activity和Fragment都有效. 他们提供了异步加载数 ...

  10. nmap详解之基础概述

    概述 nmap是一个网络探测和安全扫描程序,系统管理者和个人可以使用这个软件扫描大型的网络,获取那台主机正在运行以及提供什么服务等信息.nmap支持很多扫描技术,例如:UDP.TCP connect( ...

随机推荐

  1. 7.RabbitMQ系列之topic主题交换器

    topic主题交换器它根据在队列绑定的路由键和路由模式通配符匹配将消息路由到队列. 生产者在消息头中添加路由键并将其发送到主题交换器. 收到消息后,exchange尝试将路由键与绑定到它的所有队列的绑 ...

  2. Java模拟生产者-消费者问题。生产者不断的往仓库中存放产品,消费者从仓库中消费产品。其中生产者和消费者都可以有若干个。在这里,生产者是一个线程,消费者是一个线程。仓库容量有限,只有库满时生产者不能存

    需求分析:生产者生产产品,存放在仓库里,消费者从仓库里消费产品. 程序分析: 1.生产者仅仅在仓储未满时候生产,仓满则停止生产. 2.消费者仅仅在仓储有产品时候才能消费,仓空则等待. 3.当消费者发现 ...

  3. Spring中过滤器(Filter)和拦截器(Interceptor)的区别和联系

    在我们日常的开发中,我们经常会用到Filter和Interceptor.有时同一个功能.Filter可以做,Interceptor也可以做.有时就需要考虑使用哪一个比较好.这篇文章主要介绍一下,二者的 ...

  4. 学习ASP.NET Core Blazor编程系列九——服务器端校验

    学习ASP.NET Core Blazor编程系列一--综述 学习ASP.NET Core Blazor编程系列二--第一个Blazor应用程序(上) 学习ASP.NET Core Blazor编程系 ...

  5. 所有selenium相关的库

    通过爬虫 获取 官方文档库 如果想获取 相应的库 修改对应配置即可 代码如下 from urllib.parse import urljoin import requests from lxml im ...

  6. JavaScript&Bootstrap

    1. JS介绍 JS诞生主要是完成页面的数据验证.因此它运行在客户端,需要浏览器来执行JS代码 JS最早取名LiveScript:为了吸引更多的Java程序员,更名JavaScript JS是弱类型, ...

  7. 16.python中的回收机制

    python中的垃圾回收机制是以引用计数器为主,标记清除和分代回收为辅的 + 缓存机制 1.引用计数器 在python内部维护了一个名为refchain的环状双向链表,在python中创建的任何对象都 ...

  8. CC1,3,6回顾

    前言 前面陆续学习了CC1,CC3,CC6,以及TemplatesImpl以及改造,有点乱,正所谓温故而知新嘛,所以这篇就回顾一下,捋一捋,解决一些细节问题. CC1 由于CC1要介绍CC链的几个关键 ...

  9. 云实例初始化工具cloud-init简介

    项目简介 cloud-init是一款用于初始化云服务器的工具,它拥有丰富的模块,能够为云服务器提供的能力有:初始化密码.扩容根分区.设置主机名.注入公钥.执行自定义脚本等等,功能十分强大. 目前为止c ...

  10. C#文件路径

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Run ...