异常检测概述

首先要明确一下什么是异常检测任务。对于异常检测任务来说,我们希望能够通过现有的样本来训练一个架构,它能够根据输入与现有样本之间是否足够相似,来告诉我们这个输入是否是异常的,例如下图:

那么这里“异常”具体的含义要根据我们训练集而定,不是说异常就一定是不好的东西,例如下面几个例子就可以更好的理解:

那么异常检测的应用场景非常地多样,例如检测消费记录是否异常、检测网络连接是否异常、检测是否异常等等。

那么这个异常检测的任务是否感觉很像二分类问题呢?即我们有正类(正常)和负类(异常)的样本,然后将其放入训练器中不断地训练最后得到想要的模型。

但实际上是很难按照这样的做法来实现的!因为正类的样本实际上我们很容易收集到,但是负类的样本可以说很难收集,或者说负类样本是无穷无尽的,没有办法让机器学习到每一种负类样本的特征,例如下图的非神奇宝贝的物品是无法穷举的:

另外一个问题是异常的例子通常很难被收集到,例如网络的异常访问或者异常的交易数据等等,都是在大量的正常数据中才能够找到一个异常数据,因此这也是很严重的问题。

现在我们需要理清楚我们的思路和策略,对于我们当前想要用来做异常检测所拥有的\(\{x^1,x^2,...,x^N\}\),可能会有以下几种情况:

  • 这些样本是拥有label的,即\(\{\hat{y}^1,...,\hat{y}^N\}\),那么我们就可以用来训练一个分类器;但是我们希望分类器在见到某种样本和当前已知的数据集中的样本不接近,可以认为是机器没有见过的样本时,它能够为该样本贴上标签为"unknown",这种称为Open-set Recognition
  • 这些样本是没有label的,这种情况就需要再进行划分
    • 拥有的这些样本都是正类样本,即这些样本都是“干净”的
    • 拥有的这些样本之中存在部分异常样本,即这些样本是受到“污染”的

下面对各个情况进行介绍

Case 1:存在标签

我们从辛普森家族的例子来进行讲解,假设当前收集了很多该家族的图片并加上了标签,即:

那我们希望就是训练一个分类器,它能够读取一张图片并作出预测,预测它是这个家族中的谁。

那么如何将这个任务和异常检测挂钩呢,或者说我们如何检测不是这个家族的人的图像呢?具体的做法是:我们可以让分类器在输出类别的时候同时也输出一个数值,该数值表示它认为这张图片是这个类别的信心有多大,那么我们事先也设定一个阈值\(\lambda\),如果信心大于阈值则说明机器认为是这个家族中的人,则可以认为是正常的;否则说明机器很没有信心,那么就很有可能不是该家族中的人,如下图:

那么如何来计算这个Confidence score呢?常见的方法就是如果机器的输出是一个向量,记录了它认为分类是哪一个类别的各个概率/信息,那我们可以取该向量中的最大值来作为信心分数,因为如果机器很肯定那么其最大值肯定很大,否则就会很平均,最大值也会比较小,如下图;

或者我们也可以将这个向量看成一个概率分布,然后计算该概率分布的信息熵,因为对于概率分布来说如果它的各个取值的概率越平均则信息熵越大,否则信息熵越小,那么上面的例子中就是第一个的信息熵很小,第二个的信息熵很大,那么我们就要设定小于阈值才是正常的,大于才是不正常的。

但是这样的方法可能存在一定的问题,就是它可能只学习到正常样本的某种特别明显的标签而已,例如这样就很可能只学习到辛普森家族的人物的脸都是黄色的,那么如果将其他异常样本也涂成黄色的,那么就很可能可以得到很高的信心分数:

那么这个问题的根本原因可能是异常样本实在是太少了,那么解决的办法也有,类似于可以用GAN来生成异常样本,然后需要教机器如果看到异常的样本就需要给它较低的信心分数,说到底还是通过增加异常样本来缓解该问题。

Example Framework

我们现在来将系统的流程进行梳理:

  • 训练的时候我们很多辛普森家族任务的照片和对应的标签,并训练一个分类器,它能够告诉我们训练集中的图片是哪一个辛普森家族的人物并给予一个信心分数
  • 而我们另外训练一个 Development Set,这个集里面有很多图片,包含着是辛普森家族的图片和不是辛普森家族的图片,且带有对应的标签,这个集合的作用就是用来检测分类器的好坏,同时将阈值调整到能够在该集合上表现最好
  • 用测试集来进行检测和计算泛化性能

而如何衡量分类器的好坏通常不是用正确率这个指标的,因为在异常检测的大部分场景之中正常样本和异常样本的分布过于悬殊,很可能是好几百比一的比例,那这样的话如果机器不管看到什么样本都直接说是正常的,也能够得到很高的正确率。这并不是我们想要的机器!

一般来说异常检测系统的分类结果可能会有以下几个可能:

那么错误的情况就是两种:将正常的检测为异常的和将异常的检测为正常的。

那么如何评价这种分类结果的好坏其实就取决你觉得哪一个分类错误更加严重,哪一种更严重就设置更高的惩罚。

Case 2:不存在标签

对于不存在标签的情况,也就是我们只有\(\{x^1,x^2,...,x^N\}\),而没有\(\{\hat{y}^1,...,\hat{y}^N\}\),也就是说我们无法训练一个分类器来帮助我们进行异常检测。

那我们的具体想法就是根据样本数据产生一个分布\(P(x)\),正常的样本在该分布中得到的概率就高,异常的样本概率就低,那就可以类似地设置一个阈值将正常和异常的样本区分开。例如下图:

那么接下来的问题就是如何寻找这个分布呢?我们可以假设存在一个概率密度函数\(f_{\theta}(x)\),那么代入某一个样本后得到的值就是该样本被取样得到的概率。那么根据极大似然的思想,可以知道应该要找到对应的\(f_{\theta}(x)\)可以使得\(\{x^1,x^2,...,x^N\}\)这些样本一起出现的概率最大,即

\[L(\theta)=f_{\theta}(x^1)f_{\theta}(x^2)...f_{\theta}(x^N)\\\theta^*=argmax_{\theta}L(\theta)
\]

如果不明确极大似然估计的思想,那么可以这样简单理解:我们拥有的这些样本可以认为是从某个分布之中不断采样得到的,那么拥有\(\{x^1,x^2,...,x^N\}\)可以认为是一个事件,既然这个事件已经发生了,那么我们应该觉得这个事件在所有事件中的发生概率应该是最大的,那么它才会发生,而这个“所有事件”实际上就是由\(\theta\)不同才引起的\(f_{\theta}(x)\)不同,而产生的不同事件。

而常见的,是将该概率分布设为高斯分布:

\[f_{\mu,\Sigma}(x)=\frac{1}{(2\pi)^{\frac{D}{2}}}\frac{1}{\vert \Sigma \vert ^{\frac{1}{2}}}exp\{-\frac{1}{2} (x-\mu)^T\Sigma^{-1} (x-\mu) \}\\\mu^*,\Sigma^*=argmax_{\mu,\Sigma}L(\mu,\Sigma)
\]

直观上看不同的参数所带来的影响:

上述式子可以解出来:

\[\mu^*=\frac{1}{N}\sum_{n=1}^Nx^n\\\Sigma^*=\frac{1}{N}\sum_{n=1}^N(x-\mu^*)(x-\mu^*)^T
\]

因此我们的异常检测系统也就明确的,即:

而由于高斯分布可以有很多维度,因此可以选取很多的特征来加入这个模型,可能可以使得结果更为精确。并且在实际场景中可以将f(x)加上一个log,因为概率的限制,加上log之后的取值范围会更大,我们可以找到更好的区分点。

【机器学习】李宏毅——Anomaly Detection(异常检测)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  2. 异常检测(Anomaly detection): 异常检测算法(应用高斯分布)

    估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘 ...

  3. Machine Learning - XV. Anomaly Detection异常检測 (Week 9)

    http://blog.csdn.net/pipisorry/article/details/44783647 机器学习Machine Learning - Andrew NG courses学习笔记 ...

  4. 斯坦福机器学习视频笔记 Week9 异常检测和高斯混合模型 Anomaly Detection

    异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数 ...

  5. 机器学习(十一)-------- 异常检测(Anomaly Detection)

    异常检测(Anomaly Detection) 给定数据集

  6. Stanford机器学习---第十一讲.异常检测

    之前一直在看Standford公开课machine learning中Andrew老师的视频讲解https://class.coursera.org/ml/class/index 同时配合csdn知名 ...

  7. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  8. 异常检测(Anomaly Detection)

    十五.异常检测(Anomaly Detection) 15.1 问题的动机 参考文档: 15 - 1 - Problem Motivation (8 min).mkv 在接下来的一系列视频中,我将向大 ...

  9. 吴恩达机器学习笔记(九) —— 异常检测(Anomaly detection)

    主要内容: 一.模型介绍 二.算法过程 三.算法性能评估及ε(threshold)的选择 四.Anomaly detection vs Supervised learning 五.Multivaria ...

  10. 吴恩达机器学习笔记54-开发与评价一个异常检测系统及其与监督学习的对比(Developing and Evaluating an Anomaly Detection System and the Comparison to Supervised Learning)

    一.开发与评价一个异常检测系统 异常检测算法是一个非监督学习算法,意味着我们无法根据结果变量

随机推荐

  1. PAT (Basic Level) Practice (中文)1015 德才论 分数 25

    宋代史学家司马光在<资治通鉴>中有一段著名的"德才论":"是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得圣人,君子 ...

  2. Vue中生成UUID

    <template> <div :id="elId" class="container"> <a>{{elId}}</ ...

  3. 13.MongoDB系列之分片简介

    1. 分片概念 分片是指跨机器拆分数据的过程,有时也会用术语分区.MongoDB既可以手工分片,也支持自动分片 2. 理解集群组件 分片的目标之一是由多个分片组成的集群对应用程序来说就像是一台服务器. ...

  4. 关于TP5模板输出时间戳问题--A non well formed numeric value encountered

    某日.因为一个项目.控制器我是这么写的 1 /** 2 * get admin/Picture/index 3 * 显示所有图册信息 4 * @return view 5 */ 6 public fu ...

  5. 齐博x1商业模块仅限一个国际域名使用

    应用市场的所有商业模块 仅授权一个国际域名,大家不要试图复制到其它国际域名下使用. 仅支持一个国际域名使用,二级域名不限,但前提需要先用 www.开头的国际域名先安装,然后再到二级域名安装,并且二级域 ...

  6. eDP接口简介

    1. eDP背景介绍   随着显示分辨率的越来越高,传统的VGA.DVI等接口逐渐不能满足人们的视觉需求. 随后就产生了以HDMI.DisplayPort为代表的新型数字接口,外部接口方面HDMI占据 ...

  7. Hugging Face发布diffuser模型AI绘画库初尝鲜!

    作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...

  8. Druid SQL注入防御模块技术浅析

    官方参考: https://www.bookstack.cn/read/Druid/ffdd9118e6208531.md 前置知识 什么是Druid? Druid是一个高效的数据查询系统,主要解决的 ...

  9. 第2-1-1章 FastDFS分布式文件服务背景及系统架构介绍

    目录 1 背景 1.1 为什么需要分布式文件服务 1.1.1 单机时代 1.1.2 独立文件服务器 1.1.3 分布式文件系统 1.2 什么是FastDFS 2 系统架构 2.1 Tracker集群 ...

  10. CSS布局秘籍(1)-任督二脉BFC/IFC

    01.CSS布局 1.1.正常布局流(Normal flow) 正常布局流 就是不做任何布局控制,按照HTML的顺序(从左到右,从上而下)进行布局排列.网页基于盒子模型进行正常的布局,主要特点: 盒子 ...