1. 引言

本文基于C++语言,描述OpenGL的颜色

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

OpenGL中颜色通常数字化为RGB三个通道,根据光的反射定律,一个不透明的物体颜色为:

\[RGB_{result} = RGB_{light} \cdot RGB_{object}
\]

即,光源颜色与物体颜色相乘就是物体反射的颜色,也就是被看到的颜色

3. 编码

在片段着色器的GLSL中可以简单地实现颜色反射

白色光源照到黄色物体:

FragColor = vec4(vec3(1.0f, 1.0f, 1.0f)*vec3(1.0f, 1.0f, 0.0f), 1.0);

物体反射颜色为黄色:

蓝绿色光源照到黄色物体:

FragColor = vec4(vec3(0.0f, 1.0f, 1.0f)*vec3(1.0f, 1.0f, 0.0f), 1.0);

物体反射颜色为绿色:

4. 创建光照场景

生成顶点数据与链接顶点属性,这里使用的是之前立方体的顶点数据

unsigned int lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

编写顶点着色器GLSL:

#version 330 core
layout (location = 0) in vec3 aPos; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

编写片段着色器GLSL:

#version 330 core
out vec4 FragColor; void main()
{
FragColor = vec4(1.0); // 将向量的四个分量全部设置为1.0
}

生成着色器并链接着色器程序:

Shader lightCubeShader("light_cube.vs.glsl", "light_cube.fs.glsl");
...
lightCubeShader.use();
// 设置模型、视图和投影矩阵uniform
...
// 绘制灯立方体对象
glBindVertexArray(lightVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);

至此,光源已经完成

对于原来的立方体,给其加上光源和物体颜色

在立方体的片段着色器GLSL中:

#version 330 core
out vec4 FragColor; uniform vec3 objectColor;
uniform vec3 lightColor; void main()
{
FragColor = vec4(lightColor * objectColor, 1.0);
}

向GPU传输数据:

Shader lightingShader("colors.vs.glsl", "colors.fs.glsl");
...
// 在此之前不要忘记首先 use 对应的着色器程序(来设定uniform)
lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);

创建后的光照场景如下图:

5. 完整代码

创建光照场景完整代码如下:

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp> //全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(1.2f, 1.0f, 2.0f); // 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window); int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "color", nullptr, nullptr); if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项
glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
Shader lightingShader("../colors.vs.glsl", "../colors.fs.glsl"); unsigned int cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO); float vertices[] = {
-0.5f, -0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
-0.5f, 0.5f, -0.5f,
-0.5f, -0.5f, -0.5f, -0.5f, -0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
-0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, -0.5f,
-0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, 0.5f,
-0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
0.5f, 0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, -0.5f, 0.5f,
0.5f, 0.5f, 0.5f, -0.5f, -0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, -0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
-0.5f, -0.5f, 0.5f,
-0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, -0.5f,
};
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0); unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0); while (!glfwWindowShouldClose(window))
{
process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f);
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵
int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 观察矩阵和投影矩阵与之类似
int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36); // also draw the lamp object
lightCubeShader.use();
lightCubeShader.setMat4("projection", projection);
lightCubeShader.setMat4("view", view);
model = glm::mat4(1.0f);
model = glm::translate(model, lightPos);
model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
lightCubeShader.setMat4("model", model); glBindVertexArray(lightCubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36); glfwSwapBuffers(window);
glfwPollEvents();
} glfwTerminate();
return 0;
} void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
} void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

立方体顶点着色器GLSLcolors.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

立方体片段着色器GLSLcolors.fs.glsl

#version 330 core
out vec4 FragColor; uniform vec3 objectColor;
uniform vec3 lightColor; void main()
{
FragColor = vec4(lightColor * objectColor, 1.0);
}

光源顶点着色器GLSLlight_cube.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

光源片段着色器GLSLlight_cube.fs.glsl

#version 330 core
out vec4 FragColor; void main()
{
FragColor = vec4(1.0); // 将向量的四个分量全部设置为1.0
}

着色器Shader.hpp

#ifndef SHADER_HPP
#define SHADER_HPP #include <glad/glad.h>
#include <glm/glm.hpp> #include <string>
#include <fstream>
#include <sstream>
#include <iostream> class Shader
{
public:
unsigned int ID;
// constructor generates the shader on the fly
// ------------------------------------------------------------------------
Shader(const char* vertexPath, const char* fragmentPath)
{
// 1. retrieve the vertex/fragment source code from filePath
std::string vertexCode;
std::string fragmentCode;
std::ifstream vShaderFile;
std::ifstream fShaderFile;
// ensure ifstream objects can throw exceptions:
vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
try
{
// open files
vShaderFile.open(vertexPath);
fShaderFile.open(fragmentPath);
std::stringstream vShaderStream, fShaderStream;
// read file's buffer contents into streams
vShaderStream << vShaderFile.rdbuf();
fShaderStream << fShaderFile.rdbuf();
// close file handlers
vShaderFile.close();
fShaderFile.close();
// convert stream into string
vertexCode = vShaderStream.str();
fragmentCode = fShaderStream.str();
}
catch (std::ifstream::failure& e)
{
std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ: " << e.what() << std::endl;
}
const char* vShaderCode = vertexCode.c_str();
const char * fShaderCode = fragmentCode.c_str();
// 2. compile shaders
unsigned int vertex, fragment;
// vertex shader
vertex = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex, 1, &vShaderCode, NULL);
glCompileShader(vertex);
checkCompileErrors(vertex, "VERTEX");
// fragment Shader
fragment = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment, 1, &fShaderCode, NULL);
glCompileShader(fragment);
checkCompileErrors(fragment, "FRAGMENT");
// shader Program
ID = glCreateProgram();
glAttachShader(ID, vertex);
glAttachShader(ID, fragment);
glLinkProgram(ID);
checkCompileErrors(ID, "PROGRAM");
// delete the shaders as they're linked into our program now and no longer necessery
glDeleteShader(vertex);
glDeleteShader(fragment); }
// activate the shader
// ------------------------------------------------------------------------
void use() const
{
glUseProgram(ID);
}
// utility uniform functions
// ------------------------------------------------------------------------
void setBool(const std::string &name, bool value) const
{
glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value);
}
// ------------------------------------------------------------------------
void setInt(const std::string &name, int value) const
{
glUniform1i(glGetUniformLocation(ID, name.c_str()), value);
}
// ------------------------------------------------------------------------
void setFloat(const std::string &name, float value) const
{
glUniform1f(glGetUniformLocation(ID, name.c_str()), value);
}
// ------------------------------------------------------------------------
void setVec2(const std::string &name, const glm::vec2 &value) const
{
glUniform2fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec2(const std::string &name, float x, float y) const
{
glUniform2f(glGetUniformLocation(ID, name.c_str()), x, y);
}
// ------------------------------------------------------------------------
void setVec3(const std::string &name, const glm::vec3 &value) const
{
glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec3(const std::string &name, float x, float y, float z) const
{
glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z);
}
// ------------------------------------------------------------------------
void setVec4(const std::string &name, const glm::vec4 &value) const
{
glUniform4fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec4(const std::string &name, float x, float y, float z, float w) const
{
glUniform4f(glGetUniformLocation(ID, name.c_str()), x, y, z, w);
}
// ------------------------------------------------------------------------
void setMat2(const std::string &name, const glm::mat2 &mat) const
{
glUniformMatrix2fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
// ------------------------------------------------------------------------
void setMat3(const std::string &name, const glm::mat3 &mat) const
{
glUniformMatrix3fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
// ------------------------------------------------------------------------
void setMat4(const std::string &name, const glm::mat4 &mat) const
{
glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
} private:
// utility function for checking shader compilation/linking errors.
// ------------------------------------------------------------------------
void checkCompileErrors(GLuint shader, std::string type)
{
GLint success;
GLchar infoLog[1024];
if (type != "PROGRAM")
{
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(shader, 1024, NULL, infoLog);
std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
}
}
else
{
glGetProgramiv(shader, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(shader, 1024, NULL, infoLog);
std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
}
}
}
};
#endif

6. 参考资料

[1]颜色 - LearnOpenGL CN (learnopengl-cn.github.io)

基于C++的OpenGL 07 之颜色的更多相关文章

  1. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  2. OpenGL光照和颜色

    OpenGL光照和颜色 转自:http://www.cnblogs.com/kekec/archive/2011/08/16/2140789.html OpenGL场景中模型颜色的产生,大致为如下的流 ...

  3. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  4. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  5. 基于Android的rgb七彩环颜色采集器

    代码地址如下:http://www.demodashi.com/demo/11892.html 一.前言. 在大学期间,看到这个rgb灯,蛮好奇的,这么漂亮的颜色采集,并且可以同步到设备rbg灯颜色, ...

  6. 1、基于MFC的OpenGL程序

    首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   工程openGLMFC 1.创建单文本文件   2.添加路径.链接 方法如之前篇章所示, 链接库为op ...

  7. 基于MFC的OpenGL程序<转>

    原贴地址:https://www.cnblogs.com/pinking/p/6180225.html 首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   ...

  8. OpenGL图元的颜色属性

    OpenGL支持两种颜色模式:一种是RGBA,一种是颜色索引模式. 1. RGBA颜色RGBA模式中,每一个像素会保存以下数据:R值(红色分量).G值(绿色分量).B值(蓝色分量)和A值(alpha分 ...

  9. 【游戏开发】基于VS2017的OpenGL开发环境搭建

    一.简介 最近,马三买了两本有关于“计算机图形学”的书籍,准备在工作之余鼓捣鼓捣图形学和OpenGL编程,提升自己的价值(奔着学完能涨一波工资去的).俗话说得好,“工欲善其事,必先利其器”.想学习图形 ...

  10. 基于Cocos2d-x学习OpenGL ES 2.0系列——编写自己的shader(2)

    在上篇文章中,我给大家介绍了如何在Cocos2d-x里面绘制一个三角形,当时我们使用的是Cocos2d-x引擎自带的shader和一些辅助函数.在本文中,我将演示一下如何编写自己的shader,同时, ...

随机推荐

  1. 【每日一题】【map存值】2022年2月25日-NC112 进制转换

    描述给定一个十进制数 M ,以及需要转换的进制数 N .将十进制数 M 转化为 N 进制数. 当 N 大于 10 以后, 应在结果中使用大写字母表示大于 10 的一位,如 'A' 表示此位为 10 , ...

  2. JS中BOM与DOM操作

    BOM操作 window对象 是与浏览器窗口做交互的语言 BOM = Browser Object Model 是指浏览器对象模型,它可以使Javascript 有能力和浏览器进行对话 window. ...

  3. Qt开发Active控件:如何使用ActiveQt Server开发大型软件的主框架(2)

    Qt开发Active控件:如何使用ActiveQt Server开发大型软件的主框架 注:本文更多地是带着如何去思考答案,而不是纯粹的放一个答案上来,如果你需要直接看到完整的答案,请直接看实例和最后的 ...

  4. 【JVM】经典垃圾回收器

    本文已收录至Github,推荐阅读 Java随想录 微信公众号:Java随想录 CSDN: 码农BookSea 转载请在文首注明出处,如发现恶意抄袭/搬运,会动用法律武器维护自己的权益.让我们一起维护 ...

  5. JavaScript:操作符:操作符的特点

    在JS中,所有的操作符,都同时在做两件事,第一件事是进行计算,第二件事是返回计算的结果,这个结果需要有变量去接收,否则就成为无人认领的数据而被垃圾回收: 在JS中,有很多不常用的操作符以及语法,容易让 ...

  6. P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior

    1. 论文简介 论文题目:P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior Paper地址:paper Code ...

  7. 在windows上构建OpenCascade

    基于作者QuaoarsWorkshop的视频Open Cascade Lessons,讲的非常详细,观看需要魔法 什么是OCCT?. 首先,Open CASCADE Technology SDK 是一 ...

  8. 基于docker容器的MySQL主从设置及efcore读写分离

    1.基于docker部署MySQL,设置主从 本操作基于已经拉取的镜像(docker pull mysql) 创建一主一从两个数据库容器 docker run -d -p 3307:3306 -e M ...

  9. Ubuntu 中科大源的使用

    官方网址: https://mirrors.ustc.edu.cn/help/ubuntu.html

  10. 使用SQL4Automation让CodeSYS连接数据库

      摘要:本文旨在说明面向CodeSYS的数据库连接方案SQL4Automation的使用方法. 1.SQL4Automation简介 1.1.什么是SQL4Automation   SQL4Auto ...