NC19427 换个角度思考
题目
题目描述
给定一个序列,有多次询问,每次查询区间里小于等于某个数的元素的个数
即对于询问 \((l,r,x)\) ,你需要输出 \(\sum_{i=l}^{r}[a_i \le x]\) 的值
其中 \([exp]\) 是一个函数,它返回 \(1\) 当且仅当 \(exp\) 成立,其中 \(exp\) 表示某个表达式
输入描述
第一行两个整数 \(n,m\)
第二行 \(n\) 个整数表示序列 \(a\) 的元素,序列下标从 \(1\) 开始标号,保证 \(1 ≤ a_i ≤ 10^5\)
之后有 \(m\) 行,每行三个整数 \((l,r,k)\) ,保证 \(1 ≤ l ≤ r ≤ n\) ,且 \(1 ≤ k ≤ 10^5\)
输出描述
对于每一个询问,输出一个整数表示答案后回车
示例1
输入
5 1
1 2 3 4 5
1 5 3
输出
3
备注
数据范围
\(1 ≤ n ≤ 10^5\)
\(1 ≤ m ≤ 10^5\)
题解
知识点:树状数组,离线。
我们可以类比逆序对问题,求一个数 \(a_i\) 贡献的逆序对个数的公式 \(\displaystyle \sum_{j \leq i} [a_j > a_i]\) ,其中我们规定了 \(i\) 的枚举方向是从左到右,如此保证了 \(j\leq i\) 的偏序排除了干扰信息,再用数据结构维护 \([a_j > a_i]\) 的计算。同样的,我们可以把这个经典的公式变个形, \(\displaystyle \sum_{a_j > a_i} [j \leq i]\) ,也是同样可行的,我们从大到小枚举 \(a\) 保证 \(a_j > a_i\) 的偏序,再用数据结构维护 \([j \leq i]\) 的计算即可。
可以看出二维偏序问题中,离线将输入按照某偏序条件排序再枚举,等价于用了时间轴维护这个偏序,如此我们就可以使用线性数据结构(树状数组、线段树等)维护另一维偏序。
回到原问题,对于一个询问 \((l,r,x)\) 我们要计算 \(\displaystyle \sum_{i=l}^{r}[a_i \le x]\) ,我们可以转化为 \(\displaystyle \sum_{a_i \leq x} [l \leq i \leq r]\) 。我们可以利用时间轴维护 \(a_i < x\) 这个偏序,即将询问按 \(x\) 从小到大排序并枚举,随后用树状数组维护数字出现的区间查询即可。
但是显然,时间轴维护 \(l \leq i \leq r\) 不是那么显然,因为这不是单纯的一个偏序关系,其具有下界,需要维护数据的时效性。一个朴素的做法是带修莫队 \(O(n^{\frac{5}{3}})\) ,能过但很慢(我也不会qwq。另一个做法就是主席树,能天然维护这种关系(我更不会qwq。
时间复杂度 \(O((n+m) \log n + m \log m)\)
空间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<class T>
class Fenwick {
int n;
vector<T> node;
public:
Fenwick(int _n = 0) { init(_n); }
void init(int _n) {
n = _n;
node.assign(n + 1, T());
}
void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; }
T query(int x) {
T ans = T();
for (int i = x;i;i -= i & -i) ans += node[i];
return ans;
}
T query(int x, int y) {
T ans = T();
ans += query(y);
ans -= query(x - 1);
return ans;
}
};
struct T {
int sum = 0;
T &operator+=(const T &x) { return sum += x.sum, *this; }
T &operator-=(const T &x) { return sum -= x.sum, *this; }
};
pair<int, int> a[100007];
struct Query {
int l, r, x, id;
}q[100007];
int ans[100007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
a[i] = { x,i };
}
for (int i = 1;i <= m;i++) {
int l, r, x;
cin >> l >> r >> x;
q[i] = { l,r,x,i };
}
sort(a + 1, a + n + 1, [&](auto a, auto b) {return a.first < b.first;});
sort(q + 1, q + m + 1, [&](auto a, auto b) {return a.x < b.x;});
int pos = 1;
Fenwick<T> fw(n);
for (int i = 1;i <= m;i++) {
while (pos <= n && a[pos].first <= q[i].x) {
fw.update(a[pos].second, { 1 });
pos++;
}
ans[q[i].id] = fw.query(q[i].l, q[i].r).sum;
}
for (int i = 1;i <= m;i++) cout << ans[i] << '\n';
return 0;
}
NC19427 换个角度思考的更多相关文章
- 一个想法(续二):换个角度思考如何解决IT企业招聘难的问题!
前言: 上一篇文章:一个想法:成立草根技术联盟对开发人员进行技术定级解决企业员工招聘难问题! 当时写文的思维,是从一个公益组织的角度的思考. 因此,有不少关于从利出发的反方观点,的确是值的思考! 任何 ...
- react+laravel与服务端渲染的几点思考
一.前后端完全分离 1.用React.js做MVC中的V,剩下的交给Laravel 2.Laravel用来做API接口开发. 3.好处:实现了前后端开发的分离,从而加快前后端开发效率.另外若是多端的如 ...
- 【腾讯Bugly干货分享】微信终端跨平台组件 mars 系列(二) - 信令传输超时设计
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/9DJxipJaaBC8yC-buHgnTQ 作者简介: ...
- 微服务和SOA服务
微服务和SOA都被认为是基于服务的架构,这意味着这两种架构模式都非常强调将“服务”作为其架构中的首要组件,用于实现各种功能(包括业务层面和非业务层面).微服务和SOA是两种差异很大的架构模式,但是他们 ...
- linux 让程序在后台运行的几种可靠方法
我们经常会碰到这样的问题,用 telnet/ssh 登录了远程的 Linux 服务器,运行了一些耗时较长的任务, 结果却由于网络的不稳定导致任务中途失败.如何让命令提交后不受本地关闭终端窗口/网络断开 ...
- Linux学习之让进程在后台可靠运行的方法详解
我们经常会碰到这样的问题,用 telnet/ ssh 登录了远程的 Linux 服务器http://www.maiziedu.com/course/592/,运行了一些耗时较长的任务, 结果却由于网络 ...
- 【单元测试】NUint使用详解及Visual Studio配置
阅读目录 什么是单元测试? 为什么使用单元测试? NUint使用详解: 示例 属性 断言 简单测试 VS配置: External Tools Visual Nunit 2010 NUnit Test ...
- php cli配置文件问题
引言 今天在教别人使用protobuf的时候,无意中发现了一个php cli模式下的诡异问题,费了老半天的找到解决方法了,这里拿出来分享下. 问题描述 我们这边最先引入了protobuf协议,使用的是 ...
- Codeforces Round #238 (Div. 2) D. Toy Sum(想法题)
传送门 Description Little Chris is very keen on his toy blocks. His teacher, however, wants Chris to s ...
- if else 的妙用 —— 顾客视角
if (storedCash % 100 != 0) { System.out.println("请输入100的倍数!!!"); } else if(storedCash % 10 ...
随机推荐
- 6-SSRF漏洞
1.SSRF漏洞介绍 SSRF是一种由攻击者构造请求,由服务端发起请求的安全漏洞.一般情况下,ssrf攻击的目标是外网无法访问的内部系统. 2.SSRF原理 Ssrf的形成大多是由于服务端提供了从其他 ...
- ValueError: unsupported format character ‘Y‘ (0x59) at index 70
错误信息:ValueError: unsupported format character 'Y' (0x59) at index 70产生原因:因为python执行的sql中存在类似DATE_FOR ...
- python - 命令行下一键更新所有包
Python3.8以下这样一键更新所有包:from pip._internal.utils.misc import get_installed_distributionsfrom subprocess ...
- DASCTF NOV X联合出题人-PWN
太忙了,下午4点才开始做,,剩下的以后补上 签个到 逻辑很简单两个功能的堆,一个就是申请heap.还有一个是检验如果校验通过就会得到flag 申请模块 中间0x886是个很恶心的东西,需要我们绕过 ...
- Java面试——Redis
一.Redis 为什么那么快 [1]完全基于内存,绝大部分请求是纯粹的内存操作,非常快速.数据存在内存中.[2]数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的.[3]采用单线程 ...
- Redis Cluster集群搭建及节点的添加、删除
系统性学习,移步IT-BLOG 一.什么是 Redis Cluster Redis 是在内存中保存数据的,而我们的电脑一般内存都不大,这也意味着 Redis 不适合存储大数据,适合存储大数据的是 Ha ...
- Hyperf框架环境搭建
https://hyperf.wiki/2.2/#/README 1.PHP 7.2 以上查看PHP : php -vcurl 127.0.0.1:9501 查看是否装swoole: php --ri ...
- DOM0级与DOM2级的区别
1.DOM0级和DOM2级的共同优点:能添加多个事件处理程序,按顺序执行,HTML事件处理程序无法做到~2.关于dom0级和dom2级的区别DOM0级事件处理:同时绑定几个不同的事件,例如在绑定on ...
- 彻底弄懂C#中delegate、event、EventHandler、Action、Func的使用和区别
[目录] 1 委托 2 事件-概念的引出 3 事件-关于异常 4 事件-关于异步 5 委托-Func与Action 1 委托 在.NET中定义"委托"需要用到delegate关键字 ...
- python之修改本地Ip地址
安装模块pip install wmi # -*- coding: cp936 -*- # # FileName: ModifyIP.py # Date : 2008-01-15 # import w ...