bzoj5315/luoguP4517 防御网络(仙人掌,dp)

bzoj Luogu

题目描述略(太长了)

题解时间

本题和斯坦纳树无关。

题面保证了是一个仙人掌。。。?

但这个环之间甚至交点都没有。

对于不在环上的边很好弄。

在环上的很难单独考虑。

所以直接考虑一次算出一个环的贡献。

假设我们现在选了一个环上的不止一个点。

那么其中没有被选中的边肯定是连续的一段并且是所有被选中的点分割出的最长的。

这样很容易搞出一个枚举长度 $ l $ 的dp,通过前缀和可以优化到 $ O(n^3) $ 。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')ch=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+ch-'0';ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=211,mo=1000000007;
lint fpow(lint a,lint p){lint ret=1;while(p){if(p&1)ret=ret*a%mo;a=a*a%mo,p>>=1;}return ret;}
struct sumireko{int to,ne;}e[N<<2];int he[N],ecnt=1;
void addline(int f,int t){e[++ecnt].to=t;e[ecnt].ne=he[f],he[f]=ecnt;}
lint b2[N],b1[N];
int n,m;lint ans;
bool lonr[N<<1];
int fa[N],fi[N],sz[N],dep[N];
vector<int> rnd[N];int rcnt;
void getrnd(int x,int anc)
{
rcnt++;
for(int px=x;px!=anc;px=fa[px])
rnd[rcnt].push_back(px),lonr[fi[px]]=1;
rnd[rcnt].push_back(anc);
}
void dfs(int x)
{
sz[x]=1;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)if(t!=fa[x])
{
if(!sz[t]) fa[t]=x,dep[t]=dep[x]+1,fi[t]=i>>1,dfs(t),sz[x]+=sz[t];
else if(dep[t]<dep[x])
{
lonr[i>>1]=1;
getrnd(x,t);
}
}
}
int s[N];
lint dp[N],dg[N],ds[N];
void work(int ri)
{
vector<int> &ve=rnd[ri];
int len=ve.size();
for(int i=1;i<len;i++) s[i]=sz[ve[i-1]];s[len]=n;
for(int i=len;i>1;i--) s[i]-=s[i-1];
memset(dp+1,0,8*len);
for(int l=1;l<=len;l++)
{
for(int i=1;i<=l;i++)
{
memset(dg+1,0,8*len),memset(ds+1,0,8*len);
dg[i]=ds[i]=b1[s[i]];
for(int j=i+1;j<=len;j++)
{
dg[j]=b1[s[j]]*(ds[j-1]-ds[max(1,j-l)-1]+mo)%mo;
ds[j]=(ds[j-1]+dg[j])%mo;
}
(dp[l]+=ds[len]-ds[max(i+1,len-l+i)-1]+mo)%=mo;
}
}
for(int i=1;i<=len;++i)
(ans+=(dp[i]-dp[i-1]+mo)*(len-i))%=mo;
} int Iris()
{
b2[0]=1;for(int i=1;i<=200;i++) b2[i]=(b2[i-1]<<1)%mo,b1[i]=b2[i]-1;
read(n),read(m);for(int i=1,x,y;i<=m;i++) read(x),read(y),addline(x,y),addline(y,x);
dfs(1);
for(int i=1;i<=m;i++)if(!lonr[i])
(ans+=b1[min(sz[e[i<<1].to],sz[e[i<<1|1].to])]*b1[n-min(sz[e[i<<1].to],sz[e[i<<1|1].to])]%mo)%=mo;
for(int i=1;i<=rcnt;i++) work(i);
(ans*=fpow(b2[n],mo-2))%=mo;
printf("%lld\n",ans);
return 0;
}
}
int main(){return RKK::Iris();}

bzoj5315/luoguP4517 [JSOI2018]防御网络(仙人掌,dp)的更多相关文章

  1. 【BZOJ5315】[JSOI2018]防御网络(动态规划,仙人掌)

    [BZOJ5315][JSOI2018]防御网络(动态规划,仙人掌) 题面 BZOJ 洛谷 题解 显然图是仙人掌. 题目给了斯坦纳树就肯定不是斯坦纳树了,,,, 总不可能真让你\(2^n\)枚举点集再 ...

  2. 洛谷P4517 [JSOI2018]防御网络(dp)

    题面 传送门 题解 翻译一下题意就是每次选出一些点,要用最少的边把这些点连起来,求期望边数 我也不知道为什么反正总之就是暴力枚举太麻烦了所以我们考虑贡献 如果一条边是割边,那么它会在图里当且仅当两边的 ...

  3. BZOJ5315 [JSOI2018]防御网络 【仙人掌 + dp】

    题目链接 BZOJ5315 题解 题目好吓人= =点仙人掌 + 斯坦纳树 我们只需求出对于所有选点的方案的斯坦纳树边长总和 \(n\)那么大当然不能状压,但是考虑一下如果这是一棵树,一个方案的贡献就是 ...

  4. bzoj 5315: [Jsoi2018]防御网络

    Description Solution 考虑每一条边的贡献 对于树边,如果两边各存在一个点,那么有贡献,总贡献就是 \((2^{size}-1)*(2^{n-size}-1)\) 分别对应两边的 \ ...

  5. 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)

    1952: [Sdoi2010]城市规划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 73  Solved: 23[Submit][Status][ ...

  6. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  7. BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3467  Solved: 1438[Submit][Status][Discuss] Descripti ...

  8. 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)

    题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...

  9. bzoj4316小C的独立集(dfs树/仙人掌+DP)

    本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...

随机推荐

  1. php发送邮件 (phpmailer)

    1.首先下载phpMailer文件官方文件https://sourceforge.net/projects/phpmailer/: 还有class.smtp.php. 2.去配置一下发送邮件的服务器, ...

  2. VS2019如何设置程序以管理员权限启动

    最重要的一点.本文解释的是C#项目如何以管理员权限启动. 一个很大的误导项 该图片是C++程序的项目配置属性.C#项目中并找不到.然而网上的很多教程没有说清楚.导致我找了这个菜单找了很久. C#项目的 ...

  3. RFC3918组播组容量测试——网络测试仪实操

    一.简介 1.RFC3918简介 历史 · 在1999年3月成为正式标准 功能 · 评测网络互连设备或网络系统的性能 · 网络设备: 交换机,路由器- 内容 · 定义了一整套测试方法,为不同厂家的设备 ...

  4. BGP4协议测试——信而泰网络测试仪实操

    文章关键词 BGP:路由测试:协议测试:矢量路由协议: 一.前言: BGP是自治系统外部路由协议,用来在AS之间传递路由信息 路径矢量路由协议,从设计上避免了环路的发生 其路由信息中携带了所经过的全部 ...

  5. RFC2544背靠背测试——信而泰Renix测试软件实操

    文章关键词:背靠背测试.合法最小帧间隙.缓存区结构.吞吐量测试. 背靠背测试背景: 随着网络规模的扩大,大量的路由更新消息.频繁的文件传输和数据备份等操作都会导致数据在一段时间内急剧增加,甚至达到该物 ...

  6. python语法:注释

    Python语法:注释  python语言中的注释是来帮助程序员理解并读懂代码内容的文字.当然,注释不仅在python语言中是这个作用,在其他语言中也几乎一样. python注释的生成方式  所有演示 ...

  7. Nhibernate Batch update returned unexpected row count from update; actual row count: 0 解决方案

    以前在session.Update(object).没发现啥问题,最近update的时候,老是报错:Nhibernate Batch update returned unexpected row co ...

  8. Python:pandas(一)——常用、读写函数read_csv、read_excel、to_csv、to_excel

    学习自:pandas1.2.1documentation 0.常用 1)读写 ①从不同文本文件中读取数据的函数,都是read_xxx的形式:写函数则是to_xxx: ②对前n行感兴趣,或者用于检查读进 ...

  9. 千万级 PV是什么意思?

    首先介绍下pv的概念: PV(访问量):即Page View,页面刷新一次算一次. UV(独立访客):即Unique Visitor,00:00-24:00内相同的客户端只被计算一次. IP(独立IP ...

  10. linux添加串口权限

    通过添加到用户组的方式实现1.由于tty属于"dialout"组别,比如你的用户名是blue, 先命令查看下用户隶属的组别 groups blue 2.如果没有隶属"di ...