题目描述

在同学们的努力下, 高匀感受到了 alb 的快乐。

高勺意犹未尽,找来了一个长度为 nn 的序列 a_1,a_2,….,a_na1​,a2​,….,an​ 。

她想要删除这个序列中的 kk 个数,然后将剩下的数按下标从小到大排列成一个长度为 n-kn−k 的序列 b_1,b_2,...,b_{n-k}b1​,b2​,...,bn−k​。

高勺定义她的快乐度为 bb 序列中满足 b_i=ibi​=i 的数量,即 \sum_{i=1}^{n-k} [b_i=i]∑i=1n−k​[bi​=i] 。

高勺想知道她的快乐度的最大值为多少。

输入格式

第一行两个整数 n,k,n,k,表示序列的长度和删掉数的个数。

第二行 nn 个整数 a_iai​,表示杰哥的序列。

输出格式

输出一个整数,表示 \sum_{i=1}^{n-k} [b_i=i]∑i=1n−k​[bi​=i] 的最大值

DP暴力的话可以得40~50分。考虑正解:

对于一个数ai+x=i,只有当他前面的数删去x过后才会产生1的贡献,我们将原数列按照数值递增,数值相等时位置递减排序,用c[x]维护删去x个数的最大贡献,加入一个数ax,他要产生贡献的话要删去x-ax个数,查询前缀的最大值并由此转移,我们需要一个单点修改和查询前缀max的数据结构,所以用树状数组。

 1 #include <bits/stdc++.h>
2 #define N 500005
3 #define fi first
4 #define se second
5 #define pi pair<int, int>
6 //#define loveGsy
7 using namespace std;
8 int a[N], n, k, ans, c[N];
9 pair<int, int> b[N];
10 void add(int x, int v) {
11 x++;
12 for (; x <= n; x += x & (-x)) c[x] = max(c[x], v);
13 }
14 int query(int x) {
15 x++;
16 int s = 0;
17 for (; x; x -= x & (-x)) s = max(s, c[x]);
18 return s;
19 }
20 void solve(int x) {
21 if (a[x] > x) return ;
22 int res = query(x - a[x]) + 1;//从前缀转移
23 add(x - a[x], res);
24 if (x - a[x] <= k && a[x] <= n - k) ans = max(ans, res);
25 }
26 bool cmp(pi a, pi b) {
27 return (a.fi ^ b.fi) ? a.fi < b.fi : a.se > b.se;
28 }
29 int main() {
30 #ifdef loveGsy
31 freopen("tree.in", "r", stdin);
32 freopen("tree.out", "w", stdout);
33 #endif
34 scanf("%d %d", &n, &k);
35 for (int i = 1; i <= n; i++) {
36 scanf("%d", a + i);
37 b[i] = make_pair(a[i], i);
38 }
39 sort(b + 1, b + n + 1, cmp);
40 for (int i = 1; i <= n; i++) solve(b[i].second);
41 printf("%d\n", ans);
42 return 0;
43 }

220726 T3 最优化问题 (树状数组)的更多相关文章

  1. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  2. 模拟赛 T3 DFS序+树状数组+树链的并+点权/边权技巧

    题意:给定一颗树,有 $m$ 次操作. 操作 0 :向集合 $S$ 中加入一条路径 $(p,q)$,权值为 $v$ 操作 1 :给定一个点集 $T$,求 $T$ 的并集与 $S$ 中路径含交集的权和. ...

  3. 【树状数组】BZOJ3132 上帝造题的七分钟

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1004  Solved: 445[Submit][Status][Dis ...

  4. Gym102082 G-What Goes Up Must Come Down(树状数组)

    Several cards with numbers printed on them are lined up on the table. We’d like to change their orde ...

  5. 2018牛客网暑期ACM多校训练营(第一场)J Different Integers(树状数组)

    题意 给出一串数字以及q次查询,每次查询l,r],要求求出[1,l]和[r,n]的所有不相同的数字个数. 分析 先对数组进行倍增,变为两倍长,然后查询就变成一个完整的区间.离线处理,按r从小到大排序, ...

  6. hdu5293 lca+dp+树状数组+时间戳

    题意是给了 n 个点的树,会有m条链条 链接两个点,计算出他们没有公共点的最大价值,  公共点时这样计算的只要在他们 lca 这条链上有公共点的就说明他们相交 dp[i]为这个点包含的子树所能得到的最 ...

  7. 洛谷P3368 树状数组2 树状数组+差分

    正解:树状数组+差分 解题报告: 戳我! 不得不说灵巧真滴是越来越弱了...连模板题都要放上来了QAQ 因为今天考试的T3正解要用到树状数组这才惊觉树状数组掌握得太太太太差了...之前一直靠线段树续着 ...

  8. 二维树状数组+差分【p4514】上帝造题的七分钟

    Description "第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n\times m\)矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为\((a,b)\),右 ...

  9. 【bzoj4889】[Tjoi2017]不勤劳的图书管理员 树状数组+分块+二分

    题目描述(转自洛谷) 加里敦大学有个帝国图书馆,小豆是图书馆阅览室的一个书籍管理员.他的任务是把书排成有序的,所以无序的书让他产生厌烦,两本乱序的书会让小豆产生这两本书页数的和的厌烦度.现在有n本被打 ...

随机推荐

  1. C++ 内存模型 write_x_read_y 试例构造

    之前一段时间偶然在 B 站上刷到了南京大学蒋炎岩(jyy)老师在直播操作系统网课.点进直播间看了一下发现这个老师实力非凡,上课从不照本宣科,而且旁征博引又不吝于亲自动手演示,于是点了关注.后来开始看其 ...

  2. RSS订阅微信公众号初探-feed43

    为什么用RSS,能怎么用RSS订阅微信公众号 建议信息聚合(Really Simple Syndication, RSS)在08年我第一次摸到自己家电脑时就给我留下了印象,当时还想这打开都啥玩意呀怎么 ...

  3. WPF 截图控件之移除控件(九)「仿微信」

    WPF 截图控件之移除控件(九)「仿微信」 WPF 截图控件之移除控件(九)「仿微信」 作者:WPFDevelopersOrg 原文链接: https://github.com/WPFDevelope ...

  4. 深入理解Aarch64内存管理

    本文是对learn_the_architecture_-_aarch64_memory_management的部分翻译和个人注解.个人英文水平有限,若有翻译不当,欢迎加我私人微信LinuxDriver ...

  5. 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》

    论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...

  6. Word 的页眉、页脚、页码分别是什么?怎么设置?

    页眉:在 Word 文档中,每个页面的顶部区域为页眉.常用于显示文档的附加信息,可以插入时间.图形.公司微标.文档标题.文件名或作者姓名等. 页脚:页脚与页眉的作用相同,都可以作为显示文档的附加信息, ...

  7. [CSharpTips]C#读取SQLite数据库中文乱码

    C#读取SQLite数据库中文乱码 C#在读取C++写入数据的Sqlite数据库中的Text内容时,会出现乱码,因为C++默认编码格式为GB2312,而Sqlite编码格式为UTF-8,存入时不统一就 ...

  8. redis-hash命令

    一.HDEL key field [field ...] 从 key 指定的哈希集中移除指定的域.在哈希集中不存在的域将被忽略. 如果 key 指定的哈希集不存在,它将被认为是一个空的哈希集,该命令将 ...

  9. Android下的IPC通信方式

    一.Bundle Android的Activity.Service.Receiver都支持在Intent传递Bundle数据,Bundle实现了Parcelable接口, 所以能很方便的在不同进程之间 ...

  10. 03_Linux基础-文件类型-主辅提示符-第1提示符-Linux命令-内外部命令-快捷键-改为英文编码-3个时间-stat-其他基础命令

    03_Linux基础-文件类型-主辅提示符-第1提示符-Linux命令-内外部命令-快捷键-改为英文编码-3个时间-stat-{1..100}-du-cd-cp-file-mv-echo-id-she ...