RT-Thread 堆区大小设置
一、利用栈区的空间作为堆区
看过我之前的笔记的小伙伴都知道,以前我是通过申请栈区的空间使用的,感兴趣的小伙伴可以看我之前的笔记,RT-Thread移植到stm32。
在board.c文件文件中的代码如下所示:
#if defined(RT_USING_USER_MAIN) && defined(RT_USING_HEAP)
#define RT_HEAP_SIZE 1024
static uint32_t rt_heap[RT_HEAP_SIZE]; // heap default size: 4K(1024 * 4)
RT_WEAK void *rt_heap_begin_get(void)
{
return rt_heap;
}
RT_WEAK void *rt_heap_end_get(void)
{
return rt_heap + RT_HEAP_SIZE;
}
#endif
从上面的代码中可以看出,申请了一个栈空间rt_heap数组,大小为4K。但是这样在使用RT-Thread堆内存的时候就不太友好了。缺点如下:
堆内存大小是固定的,使得RT-Thread系统没有最大化的利用STM32的内存空间。
在RT-Thread的堆内存中使用了相应的内存算法,容易造成内存碎片化。,所以应将栈剩余的空间全部用于堆内存使用,有关算法可以看RT-Thread内存管理。
发生堆栈溢出的时候,不利于问题的查找。
所以我们使用的时候,应该获取堆区与栈区的内存分界地址,以便于给RT-Thread的堆内存使用。
二、STM32内存知识
在获取堆内存与栈内存之前,我们需要简单的理解STM32的内存知识,如果想了解更详细的内容,可以看我之前的笔记,STM32内存知识。
- code:代码存储区,存放函数体的二进制代码
- Ro-data:只读数据存储区,存放字常量数据类型(如const类型)程序结束后有系统自动释放
- RW-data:初始化可读写变量的大小,程序结束后由系统自动释放。
- ZI-data:没有初始化的可读写变量大小,程序结束后由系统自动释放。
- heap:堆区,一般由程序员分配释放,若程序员不释放,程序结束时可能由OS释放。
- stack:栈区,由编译器自动分配释放,存放函数的参数值,局部变量的值等。
- RO Size:包含Code及RO Data,表示只读数据占用Flash空间的大小。
- RW Size:包含RW Data及ZI Data,表示运行时占用的RAM的大小。
- ROM Size包含Code,RO Data及RW Data,表示烧写程序所占用的Flash的大小。
STM32程序运行的流程。如下图所示:

栈向下生长,内存地址由高至低;堆向上,内存地址由低至高,堆栈之间没有固定的界限,如下图所示:

从上面两点可以看出来,RAM是包含堆区和栈区,而堆区与栈区没有明确的界限,所以内存中没有使用的栈空间都可以申请为堆内存。我们只需要找出栈空间接结束地址,也是ZI段和结束地址即可。
三、获取栈空间的结束地址
因为不同编译器的内存标识不一样,所以需要注意一下不同环境下的获取方式。
MDK环境下,栈结束地址的获取,如下所示:
extern unsigned char Image$$ER_IROM1$$Limit; // 获取RW段在FLASH中的加载地址
extern unsigned char Image$$RW_IRAM1$$Base; // 获取RW段在RAM中的运行地址
extern unsigned char Image$$RW_IRAM1$$RW$$Limit; // 获取RW段在RAM中的结束地址
extern unsigned char Image$$RW_IRAM1$$ZI$$Limit; // 获取ZI段在RAM中的结束地址
所以在MDK中只需要使用Image$$RW_IRAM1$$ZI$$Limit链接便可获得栈空间的结束地址,如下所示:
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN ((void *)&Image$$RW_IRAM1$$ZI$$Limit)IAR环境下,栈结束地址的获取,如下所示:
#pragma section="CSTACK"
#define HEAP_BEGIN (__segment_end("CSTACK"))
GCC环境下,栈结束地址的获取,如下所示:
extern int __bss_end;
#define HEAP_BEGIN ((void *)&__bss_end)
四、RT-Thread程序更改
只需要在 board.h 文件中定义相关宏即可,然后修改 board.c 文件中rt_system_heap_init函数 的内存获取地址。
board.h 文件
/*
* Change Logs:
* Date Author
* 2022-06-29 jiaozhu
*/
#ifndef __BOARD_H__
#define __BOARD_H__
#include "stm32f10x.h"
#include "drv_gpio.h"
#include "drv_usart.h"
#ifdef __cplusplus
extern "C"
{
#endif
/*-------------------------- ROM/RAM CONFIG BEGIN --------------------------*/
#define ROM_START ((uint32_t)0x08000000)
#define ROM_SIZE (64 * 1024)
#define ROM_END ((uint32_t)(ROM_START + ROM_SIZE))
#define RAM_START (0x20000000)
#define RAM_SIZE (20 * 1024)
#define RAM_END (RAM_START + RAM_SIZE)
#define STM32_SRAM1_END RAM_END
/*-------------------------- GET HEAP SIZE --------------------------*/
#if defined(__CC_ARM) || defined(__CLANG_ARM)
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN ((void *)&Image$$RW_IRAM1$$ZI$$Limit)
#elif __ICCARM__
#pragma section="CSTACK"
#define HEAP_BEGIN (__segment_end("CSTACK"))
#else
extern int __bss_end;
#define HEAP_BEGIN ((void *)&__bss_end)
#endif
#define HEAP_END STM32_SRAM1_END
#ifdef __cplusplus
}
#endif
#endif /* __BOARD_H__ */
board.C 文件
/*
* Copyright (c) 2006-2019, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-07-24 Tanek the first version
* 2018-11-12 Ernest Chen modify copyright
*/
#include <rtthread.h>
#include <board.h>
#define _SCB_BASE (0xE000E010UL)
#define _SYSTICK_CTRL (*(rt_uint32_t *)(_SCB_BASE + 0x0))
#define _SYSTICK_LOAD (*(rt_uint32_t *)(_SCB_BASE + 0x4))
#define _SYSTICK_VAL (*(rt_uint32_t *)(_SCB_BASE + 0x8))
#define _SYSTICK_CALIB (*(rt_uint32_t *)(_SCB_BASE + 0xC))
#define _SYSTICK_PRI (*(rt_uint8_t *)(0xE000ED23UL))
// Updates the variable SystemCoreClock and must be called
// whenever the core clock is changed during program execution.
extern void SystemCoreClockUpdate(void);
// Holds the system core clock, which is the system clock
// frequency supplied to the SysTick timer and the processor
// core clock.
extern uint32_t SystemCoreClock;
void STM32F10x_peripheral_init(void)
{
// Initialize serial port
USART1_Config();
// Initialize LED
LED_GPIO_Config();
}
static uint32_t _SysTick_Config(rt_uint32_t ticks)
{
if ((ticks - 1) > 0xFFFFFF)
{
return 1;
}
_SYSTICK_LOAD = ticks - 1;
_SYSTICK_PRI = 0xFF;
_SYSTICK_VAL = 0;
_SYSTICK_CTRL = 0x07;
return 0;
}
/**
* This function will initial your board.
*/
void rt_hw_board_init()
{
STM32F10x_peripheral_init();
/* System Clock Update */
SystemCoreClockUpdate();
/* System Tick Configuration */
_SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);
#if defined(RT_USING_USER_MAIN) && defined(RT_USING_HEAP)
rt_system_heap_init((void *) HEAP_BEGIN, (void *) HEAP_END);
#endif
/* Set the shell console output device */
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
/* Board underlying hardware initialization */
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
}
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
五、堆区和栈区的空间使用查看
栈空间的使用情况查看
因为栈空间的管理直接是由编译管理的,所以编译完成后直接可以看到编译器查看(这里以MDK环境为例),如下图所示:

从图中可知,栈空间的使用等于208+3448(字节)。
堆空间的使用情况查看
在RT-Thread 有相应内存管理算法,也提供了堆内存是查看方式,所以只需要在 FinSH 中使用 free 指令查看即可,如下图所示,对于 FinSH 不了解的小伙伴,可以查看STM32 移植 RT-Thread 标准版的 FinSH 组件

参考文献
STM32链接脚本详解:https://blog.csdn.net/qq_27575841/article/details/104373417
RT-Thread 堆区大小设置的更多相关文章
- 按字节读取txt文件缓存区大小设置多少比较好?
读取 txt 文件常规写法有逐行读取和按照字节缓存读取,那么按照字节缓存读取时,设置缓存区多大比较好呢?百度了一下,没发现有说这个问题的,自测了一把,以事实说话. 常规读取方法如下: // 字节流读取 ...
- Heap堆的理解以及在IAR中如何设置堆的大小
文章首发于浩瀚先森博客 堆栈的概念在脑海里已经存在有一段时间了,今天就测试来整理下Heap堆.栈以后再说. 堆区不像全局变量和局部变量总是有指定的内存大小,它是为了在程序运行时动态分配内存而设定的一块 ...
- jvm详情——6、堆大小设置简单说明
年轻代的设置很关键JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64 ...
- Hadoop作业JVM堆大小设置优化 [转]
前段时间,公司Hadoop集群整体的负载很高,查了一下原因,发现原来是客户端那边在每一个作业上擅自配置了很大的堆空间,从而导致集群负载很高.下面我就来讲讲怎么来现在客户端那边的JVM堆大小的设置.我们 ...
- 一步步优化JVM四:决定Java堆的大小以及内存占用
到目前为止,还没有做明确的优化工作.只是做了初始化选择工作,比如说:JVM部署模型.JVM运行环境.收集哪些垃圾回收器的信息以及需要遵守垃圾回收原则.这一步将介绍如何评估应用需要的内存大小以及Java ...
- 了解java虚拟机—堆相关参数设置(3)
堆相关配置 -Xmx 最大堆空间 -Xms 初始堆空间大小,如果初始堆空间耗尽,JVM会对堆空间扩容,其扩展上限为最大堆空间.通常-Xms与-Xmx设置为同样大小,避免扩容造成性能损耗. -Xmn 设 ...
- JVM笔记五-堆区
JVM笔记五-堆区 在JVM中,堆区是重中之重.通过前面文章的学习,我们知道了,栈区是不会有垃圾回收的,所以,经常说的垃圾回收,其实就是回收的是堆区的数据.在这里,我们将会看到传说中的,新生代.老年代 ...
- IOS 杂笔-17(堆区栈区等)
栈区(stack):由系统自动分配,一般存放函数参数值.局部变量的值等.由编译器自动创建与释放.其操作方式类似于数据结构中的栈,即后进先出.先进后出的原则. 例如:在函数中申明一个局部变量int b; ...
- iOS程序中的内存分配 栈区堆区全局区
在计算机系统中,运行的应用程序的数据都是保存在内存中的,不同类型的数据,保存的内存区域不同.一.内存分区 栈区(stack) 由编译器自动分配并释放,存放函数的参数值,局部变量等.栈是系统数据结构,对 ...
- 闪回恢复区大小不够。报ORA-19809、ORA-19804
问题: 闪回恢复区大小不够,rman默认备份路径报错.RMAN> backup database;Starting backup at 01-DEC-14using target databas ...
随机推荐
- RMI反序列化分析
RMI介绍 RMI全程Remote Method Invocation (远程方法引用),RMI有客户端和服务端,还有一个注册中心,在java中客户端可以通过RMI调用服务端的方法,流程图如下: 服务 ...
- KingbaseES V8R6 集群运维案例 -- 脚本部署集群后ssh无法连接
案例说明: 在kylin V10环境下,通过脚本方式部署KingbaseES V8R6集群后,发现ssh无法连接主机,通过分析发现在脚本部署过程中会对系统环境进行优化配置,在修改了/etc/ssh/s ...
- 花式栈溢出 CTFshowpwn88
花式栈溢出 在这之前确实对这方面了解很少,一般这种花式栈溢出不仅仅要求你能发现漏洞,最主要的是你要有随机应变的能力 这个题是一个64位的题目看一下保护 canary 和 nx保护都开了,我们用ida打 ...
- 基于HANA重构业务的总结
本文于2019年7月29日完成,发布在个人博客网站上. 考虑个人博客因某种原因无法修复,于是在博客园安家,之前发布的文章逐步搬迁过来. 依据领导的规划,本月启动了一项业务迁移工作,作为特别行动,部门安 ...
- 李俊刚:我是如何在OpenHarmony完成ap6275s WiFi驱动的HDF适配工作的?
编者按:在 OpenHarmony 生态发展过程中,涌现了大批优秀的代码贡献者,本专题旨在表彰贡献.分享经验,文中内容来自嘉宾访谈,不代表 OpenHarmony 工作委员会观点. 李俊刚 深圳开鸿数 ...
- RabbitMQ 04 直连模式-Java操作
使用Java原生的方式使用RabbitMQ现在已经较少,但这是基础,还是有必要了解的. 引入依赖. <dependency> <groupId>com.rabbitmq< ...
- 限时招募高校学生,带你沉浸式体验HDC.Together 2023
- IaC 管理新思路:Walrus 和 Terraform 的差异化探索
Terraform 的社区版本及商业化版本,让其成为在基础设施即代码(IaC)领域中可靠的部署和管理平台.尽管目前 Terraform Cloud/Enterprise 仍然是最为广泛采用的 IaC ...
- 重新整理 .net core 实践篇—————应用层[三十]
前言 简单介绍一下应用层. 正文 应用层用来做什么的呢? 应用层用来做处理api请求的. [HttpPost] public Task<long> CreateOrder([FromBod ...
- sass 基本常识
一.什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了SASS的主要用法.我的目标是,有了这篇文章,日常的一 ...