岭回归(Ridge Regression)是一种用于处理共线性数据的线性回归改进方法。
和上一篇用基于最小二乘法的线性回归相比,它通过放弃最小二乘的无偏性,
以损失部分信息、降低精度为代价来获得更实际和可靠性更强的回归系数。

1. 概述

岭回归的模型对于存在大量相关特征(这些特征之间存在很高的相关性)的数据时效果远好于基于最小二乘法的线性模型。

原因就是它通过给系数的大小增加一个约束条件(即L2正则化项),来防止模型过度拟合训练数据。
损失函数一般定义为:\(L(w) = (y-wX)^2+\lambda\parallel w\parallel_2\)
其中 \(\lambda\parallel w\parallel_2 = \lambda\sum_{i=1}^{n}w_i^2\),也就是 L2正则化项

模型训练的过程就是寻找让损失函数\(L(w)\)最小的参数\(w\)。
也就等价于:\(\begin{align}
& arg\ min(y-wX)^2 \\
& s.t. \sum w_{ij}^2 < s
\end{align}\)
这两个公式表示,在满足约束条件 \(\sum w_{ij}^2 < s\)的情况下,计算 \((y-wX)^2\)的最小值。

2. 创建样本数据

岭回归适用于特征之间有很高关联性的数据集。
所以用scikit-learn中的加州住房数据集,这个数据集有8个房屋售价相关的属性,属性之间关联性高。
数据集的文件获取可以参考:TODO

从上面的文章中下载数据集(是一个zip压缩文件),
如下例所示,下载之后在 D:\share\data 中解压,就可以加载了。

import os
from sklearn.datasets import fetch_california_housing home_dir = "D:\share\data"
data = fetch_california_housing(data_home=os.path.join(home_dir, "cal_housing"))
X = data["data"]
y = data["target"]

大约有2万多条数据。

3. 模型训练

数据加载之后,首先划分训练集和测试集。

from sklearn.model_selection import train_test_split

# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

然后用岭回归模型训练数据:

from sklearn.linear_model import Ridge

# 初始化岭回归线性模型
reg = Ridge()
# 训练模型
reg.fit(X_train, y_train)

这里,用的Ridge()模型的默认参数,它的一些主要参数如下(训练模型时可根据情况调整参数):

  1. alpha:控制正则化强度的常量,也就是上面公式中的 \(\lambda\),默认值1,设置为0时,就是最小二乘法
  2. fit_intercept:是否拟合此模型的截距,默认 True
  3. copy_X:是否复制X(也就是训练数据),默认 True,设置为False的话,有可能会改变训练数据
  4. tol:算法迭代时,收敛的精度上限
  5. solver:迭代时使用的求解器,包含** {auto, svd, cholesky, lsqr, sparse_cg, sag, saga, lbfgs}** 等算法,默认 auto(根据数据类型自动选择求解器)

最后,用测试数据来验证训练后模型的性能。

y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error)) # 运行结果
均方误差:0.0029948538129997903
复相关系数:0.9987534427417275
中位数绝对误差:0.049467455621301726

从结果来看,模型的性能还不错,均方误差中位数绝对误差都比较小,而复相关系数高,说明在测试数据中,预测的值和实际的值比较接近。

4. 总结

总之,岭回归在很多场景下都有应用,例如多元线性回归、时间序列预测、特征选择等。
它的主要优点是可以处理共线性数据,并且在加入噪声的情况下会有更稳定的性能。

然而,由于其对数据的缩放敏感岭回归的一个主要局限性是它可能对数据的尺度非常敏感
此外,岭回归正则化参数的选择通常需要一些经验或者实验来确定,这也增加了其应用的复杂性

PS.
共线性是指特征之间存在高度相关性,这可能导致线性回归模型的不稳定。

【scikit-learn基础】--『监督学习』之 岭回归的更多相关文章

  1. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  2. Python基础『二』

    目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...

  3. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装

    [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  8. 『TensorFlow』批处理类

    『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

  10. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

随机推荐

  1. 发现了一个可以免费下载jar包的网站,所有jar包都有

    苦苦找不到项目所需要的jar包?发现了一个可以免费下载jar包的网站: https://jar-download.com/ 非常好用. 每个JAR文件都将从官方Maven存储库下载.通过下载所有Mav ...

  2. 触动精灵生成的APK文件如何加固保护

    触动精灵是一款模拟手机触摸.按键操作的软件,通过制作脚本,可以让触动精灵代替双手,自动执行一系列触摸.按键操作, 深受一些极客开发者喜爱. 触动精灵生成的APK文件自带了一些基础的加密,可以保护APK ...

  3. 通过 Haproxy 实现 ss 负载均衡

    介绍 缺点:所有的SS的加密方式和密码必须一致 介绍:HAProxy是一个使用C语言编写的自由及开放原始码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理. 安装Haproxy ...

  4. What is Lambda?

    根据我的观察,Lambda是一种比较灵活的形式,需要多看几个案例才能明白它. Lambda是一种简化代码的技术手段,主要用于简化匿名实现类,允许把函数作为一个方法的参数传递进方法中.它本身并不会创造出 ...

  5. STM32 + ESP32(AT固件 MQTT协议) + MQTTX(桌面终端) + (EMQX消息服务器)

    翻出老物件,搭建一个简单的 IOT 开发环境,也算是废物利用了 ,接下来加传感器.1. STM32  采集数据:     RTOS.     资源相对比较丰富,可以根据项目需求定制.2. ESP32  ...

  6. C++函数如何具有多个返回值?

      本文介绍在C++语言中,使用一个函数,并返回两个及以上.同类型或不同类型的返回值的具体方法.   对于C++语言而言,其不能像Python等语言一样在一个函数中返回多个返回值:但是我们也会经常遇到 ...

  7. Atcoder Regular Contest 165

    B. Sliding Window Sort 2 被题目名里的滑动窗口误导了,于是卡 B 40min /fn Description 给定长度为 \(n\) 的排列 \(P\) 和一个整数 \(K\) ...

  8. 一篇文章带你掌握测试基础语言——Python

    一篇文章带你掌握测试基础语言--Python 本篇文章针对将Python作为第二语言的用户观看(已有Java或C基础的用户) 因为之前学习过Java语言,所以本篇文章主要针对Python的特征和一些基 ...

  9. GitHub Actions 入门指南

    前言 GitHub Actions 可以构建一组自动化的工作流程,并提供了拉取请求.合并分支等事件来触发他们.一般成熟的开源项目会在每个版本发布时提供 releases ,它就是通过 Actions ...

  10. NET8 ORM 使用AOT SqlSugar

    AOT介绍 .Net8的本地预编机器码AOT,它几乎进行了100%的自举.微软为了摆脱C++的钳制,做了很多努力.也就是代码几乎是用C#重写,包括了虚拟机,GC,内存模型等等.而需要C++做的,也就仅 ...