岭回归(Ridge Regression)是一种用于处理共线性数据的线性回归改进方法。
和上一篇用基于最小二乘法的线性回归相比,它通过放弃最小二乘的无偏性,
以损失部分信息、降低精度为代价来获得更实际和可靠性更强的回归系数。

1. 概述

岭回归的模型对于存在大量相关特征(这些特征之间存在很高的相关性)的数据时效果远好于基于最小二乘法的线性模型。

原因就是它通过给系数的大小增加一个约束条件(即L2正则化项),来防止模型过度拟合训练数据。
损失函数一般定义为:\(L(w) = (y-wX)^2+\lambda\parallel w\parallel_2\)
其中 \(\lambda\parallel w\parallel_2 = \lambda\sum_{i=1}^{n}w_i^2\),也就是 L2正则化项

模型训练的过程就是寻找让损失函数\(L(w)\)最小的参数\(w\)。
也就等价于:\(\begin{align}
& arg\ min(y-wX)^2 \\
& s.t. \sum w_{ij}^2 < s
\end{align}\)
这两个公式表示,在满足约束条件 \(\sum w_{ij}^2 < s\)的情况下,计算 \((y-wX)^2\)的最小值。

2. 创建样本数据

岭回归适用于特征之间有很高关联性的数据集。
所以用scikit-learn中的加州住房数据集,这个数据集有8个房屋售价相关的属性,属性之间关联性高。
数据集的文件获取可以参考:TODO

从上面的文章中下载数据集(是一个zip压缩文件),
如下例所示,下载之后在 D:\share\data 中解压,就可以加载了。

import os
from sklearn.datasets import fetch_california_housing home_dir = "D:\share\data"
data = fetch_california_housing(data_home=os.path.join(home_dir, "cal_housing"))
X = data["data"]
y = data["target"]

大约有2万多条数据。

3. 模型训练

数据加载之后,首先划分训练集和测试集。

from sklearn.model_selection import train_test_split

# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

然后用岭回归模型训练数据:

from sklearn.linear_model import Ridge

# 初始化岭回归线性模型
reg = Ridge()
# 训练模型
reg.fit(X_train, y_train)

这里,用的Ridge()模型的默认参数,它的一些主要参数如下(训练模型时可根据情况调整参数):

  1. alpha:控制正则化强度的常量,也就是上面公式中的 \(\lambda\),默认值1,设置为0时,就是最小二乘法
  2. fit_intercept:是否拟合此模型的截距,默认 True
  3. copy_X:是否复制X(也就是训练数据),默认 True,设置为False的话,有可能会改变训练数据
  4. tol:算法迭代时,收敛的精度上限
  5. solver:迭代时使用的求解器,包含** {auto, svd, cholesky, lsqr, sparse_cg, sag, saga, lbfgs}** 等算法,默认 auto(根据数据类型自动选择求解器)

最后,用测试数据来验证训练后模型的性能。

y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error)) # 运行结果
均方误差:0.0029948538129997903
复相关系数:0.9987534427417275
中位数绝对误差:0.049467455621301726

从结果来看,模型的性能还不错,均方误差中位数绝对误差都比较小,而复相关系数高,说明在测试数据中,预测的值和实际的值比较接近。

4. 总结

总之,岭回归在很多场景下都有应用,例如多元线性回归、时间序列预测、特征选择等。
它的主要优点是可以处理共线性数据,并且在加入噪声的情况下会有更稳定的性能。

然而,由于其对数据的缩放敏感岭回归的一个主要局限性是它可能对数据的尺度非常敏感
此外,岭回归正则化参数的选择通常需要一些经验或者实验来确定,这也增加了其应用的复杂性

PS.
共线性是指特征之间存在高度相关性,这可能导致线性回归模型的不稳定。

【scikit-learn基础】--『监督学习』之 岭回归的更多相关文章

  1. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  2. Python基础『二』

    目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...

  3. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装

    [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  8. 『TensorFlow』批处理类

    『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

  10. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

随机推荐

  1. QA|20221001|SecureCRT自动断开怎么办?

    Q:SecureCRT自动断开怎么办? A:如下设置

  2. tomcat远程部署

    使用maven的插件对tomcat进行远程部署,大大降低了部署步骤,对于远程部署调试也有一定的帮助 要让maven对够进行远程部署,我们需要对tomcat进行配置,主要是配置tomcat-user.x ...

  3. 《Python魔法大冒险》004 第一个魔法程序

    在图书馆的一个安静的角落,魔法师和小鱼坐在一张巨大的桌子前.桌子上摆放着那台神秘的笔记本电脑. 魔法师: 小鱼,你已经学会了如何安装魔法解释器和代码编辑器.是时候开始编写你的第一个Python魔法程序 ...

  4. 全局安装oh-my-zsh保姆教程

    我的系统是CentOS 7.6,按流程走完后可以实现系统内所有用户都默认使用zsh且插件配置共享省去重复编写配置或软连接的烦恼 1 安装git yum -y install git 2 安装zsh y ...

  5. Chrome 手机端网页如何使用开发者模式

    chrome 手机端网页如何调试 在Chrome手机端,你可以使用Chrome开发者工具来调试网页.下面是一些步骤: 首先,确保你的手机已经开启开发者模式.打开USB调试功能或可以通过USB连接或无线 ...

  6. Burp Suite抓包工具配置代理手机抓取数据包

    工作中很多手机上的问题因为环境差异导致无法在pc设备上完整的模拟真实物理手机,因此需要方法能抓取到手机设备上所有数据包发送详情.发现了这个好用的数据包抓取工具Burp Suite. 一.配置流程: 1 ...

  7. ElasticSearch系列——文档操作

    文章目录 Elasticsearch的增删查改(CURD) 一 CURD之Create 二 CURD之Update 三 CURD之Delete 四 CURD之Retrieve Elasticsearc ...

  8. 前端三件套系例之CSS——响应式布局

    文章目录 1.什么是响应式设计 1-1 定义 1-2 响应式设计的优势 2.屏幕的相关概念 3.viewport 视口 3-1 什么是viewport 3-2 设置viewport 4.媒体查询 @m ...

  9. 前端框架——Vue3

    文章目录 Vue3快速上手 1.Vue3简介 2.Vue3带来了什么 1.性能的提升 2.源码的升级 3.拥抱TypeScript 4.新的特性 一.创建Vue3.0工程 1.使用 vue-cli 创 ...

  10. 快速添加string value Refactor->android->Extract Android String 或按Ctrl+1 出现列表框选择Extract Android String 来进行String国际化

    快速添加string value Refactor->android->Extract Android String或按Ctrl+1 出现列表框选择Extract Android Stri ...