基本的知识点引用自 OI wiki,感谢社区的帮助

什么是区间 DP?

区间类动态规划是线性动态规划的扩展,它在分阶段地划分问题时,与阶段中元素出现的顺序和由前一阶段的哪些元素合并而来有很大的关系。令状态 \(f(i,j)\) 表示将下标位置 \(i\) 到 \(j\) 的所有元素合并能获得的价值的最大值,那么 \(f(i,j)=\max\{f(i,k)+f(k+1,j)+cost\}\),\(cost\) 为将这两组元素合并起来的代价。

区间 DP 的特点:

合并:即将两个或多个部分进行整合,当然也可以反过来;

特征:能将问题分解为能两两合并的形式;

求解:对整个问题设最优值,枚举合并点,将问题分解为左右两个部分,最后合并两个部分的最优值得到原问题的最优值。

例题「NOI1995」石子合并

在一个环上有 $n$ 个数 $a_1,a_2,...,a_n$,进行 $n-1$ 次合并操作,每次操作将相邻的两堆合并成一堆,能获得新的一堆中的石子数量的和的得分。你需要最大化你的得分。

正常来说考虑不在环上,而在一条链上的情况。

令 \(f(i,j)\) 表示将区间 \([i,j]\) 内的所有石子合并到一起的最大得分。

写出 状态转移方程

\[f(i,j)=\max\{f(i,k)+f(k+1,j)+\sum_{t=i}^{j} a_t \}~(i\le k
\]

令 \(sum_i\) 表示 \(a\) 数组的前缀和,状态转移方程变形为

\[f(i,j)=\max\{f(i,k)+f(k+1,j)+sum_j-sum_{i-1}\}
\]

怎样进行状态转移

由于计算 \(f(i,j)\) 的值时需要知道所有 \(f(i,k)\) 和 \(f(k+1,j)\) 的值,而这两个中包含的元素的数量都小于 \(f(i,j)\),所以我们以 \(len=j-i+1\) 作为 DP 的阶段。首先从小到大枚举 \(len\),然后枚举 \(i\) 的值,根据 \(len\) 和 \(i\) 用公式计算出 \(j\) 的值,然后枚举 \(k\),时间复杂度为 \(O(n^3)\)

怎样处理环

题目中石子围成一个环,而不是一条链,怎么办呢?

方法一:由于石子围成一个环,我们可以枚举分开的位置,将这个环转化成一个链,由于要枚举 \(n\) 次,最终的时间复杂度为 \(O(n^4)\)。

方法二:我们将这条链延长两倍,变成 \(2\times n\) 堆,其中第 \(i\) 堆与第 \(n+i\) 堆相同,用动态规划求解后,取 \(f(1,n),f(2,n+1),...,f(i,n+i-1)\) 中的最优值,即为最后的答案。时间复杂度 \(O(n^3)\)。

核心代码
for (len = 1; len <= n; len++)
for (i = 1; i <= 2 * n - 1; i++) {
int j = len + i - 1;
for (k = i; k < j && k <= 2 * n - 1; k++)
f[i][j] = max(f[i][j], f[i][k] + f[k + 1][j] + sum[j] - sum[i - 1]);
}

分析方法和模版


区间DP 练习题题解 ①:Here

区间DP 练习题题解 ②:Here

【算法学习笔记】区间DP的更多相关文章

  1. [学习笔记]区间dp

    区间 \(dp\) 1.[HAOI2008]玩具取名 \(f[l][r][W/I/N/G]\) 表示区间 \([l,r]\) 中能否压缩成 \(W/I/N/G\) \(Code\ Below:\) # ...

  2. 算法学习笔记(5): 最近公共祖先(LCA)

    最近公共祖先(LCA) 目录 最近公共祖先(LCA) 定义 求法 方法一:树上倍增 朴素算法 复杂度分析 方法二:dfs序与ST表 初始化与查询 复杂度分析 方法三:树链剖分 DFS序 性质 重链 重 ...

  3. 算法学习笔记(3): 倍增与ST算法

    倍增 目录 倍增 查找 洛谷P2249 重点 变式练习 快速幂 ST表 扩展 - 运算 扩展 - 区间 变式答案 倍增,字面意思即"成倍增长" 他与二分十分类似,都是基于" ...

  4. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

  5. Manacher算法学习笔记 | LeetCode#5

    Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...

  6. Johnson算法学习笔记

    \(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...

  7. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

  8. Johnson 全源最短路径算法学习笔记

    Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...

  9. Miller-Rabin 与 Pollard-Rho 算法学习笔记

    前言 Miller-Rabin 算法用于判断一个数 \(p\) 是否是质数,若选定 \(w\) 个数进行判断,那么正确率约是 \(1-\frac{1}{4^w}\) ,时间复杂度为 \(O(\log ...

  10. 算法学习笔记(9): 中国剩余定理(CRT)以及其扩展(EXCRT)

    扩展中国剩余定理 讲解扩展之前,我们先叙述一下普通的中国剩余定理 中国剩余定理 中国剩余定理通过一种非常精巧的构造求出了一个可行解 但是毕竟是构造,所以相对较复杂 \[\begin{cases} x ...

随机推荐

  1. Jayway JsonPath-提取JSON文档内容的Java DSL

    介绍 JsonPath是一种能够提取部分JSON文档属性.对象.数组的语法,支持条件过滤.数学运算.字符串处理等功能.JsonPath与JSON文档就像 XPath 表达式与 XML 文档结合使用一样 ...

  2. 探索 Web API:SpeechSynthesis 与文本语言转换技术

    一.引言 随着科技的不断发展,人机交互的方式也在不断演变.语音识别和合成技术在人工智能领域中具有重要地位,它们为残障人士和日常生活中的各种场景提供了便利.Web API 是 Web 应用程序接口的一种 ...

  3. Google Guava提供的特殊的Table集合

    1.Table 是个啥? 是一个特殊的映射,其中两个键可以在组合的方式被指定为单个值.它类似于创建映射的映射. 当你想使用多个键做索引的时候,你可能会用类似 Map<rowKey, Map< ...

  4. MySQL运维9-Mycat分库分表之枚举分片

    一.枚举分片 通过在配置文件中配置可能的枚举值,指定数据分布到不同数据节点上,这种方式就是枚举分片规则,本规则适用于按照省份,性别,状态拆分数据等业务 二.枚举分片案例 枚举分片需求:现有 tb_en ...

  5. pytorch学习笔记——加载checkpoint时,程序报错,存在GPU和CPU不同步的情况

    当我们需要加载之前训练的checkpoint的时候,有时候会发现之前能训练的代码无法继续训练. 这时候很有可能加载优化器的步骤在加载模型前面,这样可能会导致优化器的参数仍然在CPU上,因此代码需要由原 ...

  6. Go 泛型之类型参数

    Go 泛型之类型参数 一.Go 的泛型与其他主流编程语言的泛型差异 Go泛型和其他支持泛型的主流编程语言之间的泛型设计与实现存在差异一样,Go 的泛型与其他主流编程语言的泛型也是不同的.我们先看一下 ...

  7. AntDesignBlazor示例——Modal表单

    本示例是AntDesign Blazor的入门示例,在学习的同时分享出来,以供新手参考. 示例代码仓库:https://gitee.com/known/BlazorDemo 1. 学习目标 创建Mod ...

  8. 数字孪生结合GIS会给矿业带来怎样的改变

    数字孪生技术和GIS的结合为矿业带来了革命性的改变.矿业作为重要的经济支柱,其发展与资源的开采.生产过程的管理密切相关.通过数字孪生和GIS的融合,矿业行业可以实现更高效.可持续的运营和管理,带来许多 ...

  9. nodejs 中npm下载依赖速度慢的问题

    已解决:nodejs 中npm下载依赖速度慢的问题 强烈建议不要用直接使用 cnpm 安装,会有各种诡异的 bug 可以通过重新指定 registry 来解决 npm 安装速度慢的问题 点击查看代码 ...

  10. STM32CubeMX教程6 TIM 通用定时器 - 生成PWM波

    1.准备材料 开发板(STM32F407G-DISC1) ST-LINK/V2驱动 STM32CubeMX软件(Version 6.10.0) keil µVision5 IDE(MDK-Arm) 逻 ...