POJ 2387 Til the Cows Come Home(最短路板子题,Dijkstra算法, spfa算法,Floyd算法,深搜DFS)
Til the Cows Come Home
| Time Limit: 1000MS | Memory Limit: 65536K | |
|---|---|---|
| Total Submissions: 43861 | Accepted: 14902 |
Description
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
Hint
INPUT DETAILS:
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
思路:
经典最短路径板子题(模板题)
现在用 Dijkstra算法, spfa(bellman ford)算法, Floyd算法, 深搜DFS都写一遍回顾下
递归DFS(TLE)
使用快读(代码未写出)以后仍T,说明DFS做了很多无用的搜索,在优化搜索的程度上可以进阶学习A*搜索算法
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(b));
const int inf = 0x3f3f3f3f;
const int N = 1000 + 10;
int map[N][N];
bool book[N];
int minn , n;
void dfs(int index,int step) {
if (index == 1) {
minn = min(minn, step);
return;
}
if (step > minn)return;
for (int i = 1; i <= n; ++i) {
if (!book[i] && map[index][i] != inf) {
book[i] = 1;
dfs(i, step + map[index][i]);
book[i] = 0;
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t, t1, t2, w;
while (cin >> t >> n) {
minn = inf;
ms(map,inf);
ms(book,false);
//memset(map, inf, sizeof(map));
//memset(book, false, sizeof(book));
while (t--) {
cin >> t1 >> t2 >> w;
map[t1][t2] = map[t2][t1] = min(map[t1][t2], w);
}
book[n] = 1;
dfs(n, 0);
cout << minn << endl;
}
return 0;
}
dijkstra算法(AC 、79ms)
#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int inf=1<<29;
int map[1010][1010];//map[i][j]表示从i-->j的距离
int dist[1010];//dist[i]从v1到i的距离
int vis[1010];//标记有没有被访问过
void dijkstra(int n)
{
int k,min;
for(int i=1; i<=n; i++)
{
dist[i]=map[1][i];
vis[i]=0;
}
for(int i=1; i<=n; i++)//遍历顶点
{
k=0;
min=inf;
for(int j=1; j<=n; j++)
if(vis[j]==0&&dist[j]<min)
{
min=dist[j];
k=j;
}
vis[k]=1;
for(int j=1; j<=n; j++)
if(vis[j]==0&&dist[k]+map[k][j]<dist[j])
dist[j]=dist[k]+map[k][j];//如果找到了通路就加上
}
return;
}
int main()
{
int t,n,a,b,w;
while(~scanf("%d%d",&t,&n))
{
mem(map,0);
mem(vis,0);
mem(dist,0);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
map[i][j]=inf;//初始化为无穷大
for(int i=1; i<=t; i++)
{
scanf("%d%d%d",&a,&b,&w);
if(w<map[a][b])
{
map[a][b]=w;
map[b][a]=map[a][b];//建立无向图
}//这里是判断是否有重边,应为两点之间的路,未必只有一条。
}
dijkstra(n);
printf("%d\n",dist[n]);
}
return 0;
}
堆优化:
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>1
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 2000+5
#define P pair<int,int>//first最短路径second顶点编号
using namespace std;
int N, M, X;
struct edge
{
int to, cost;
edge(int to, int cost) :to(to), cost(cost) {}
};
vector<edge>G[Maxn];//G[i] 从i到G[i].to的距离为cost
int d[Maxn][Maxn];//d[i][j]从i到j的最短距离
void Dijk(int s)
{
priority_queue<P, vector<P>, greater<P> >q;//按first从小到大出队
for (int i = 0; i <= M; i++)
d[s][i] = INF;
d[s][s] = 0;
q.push(P(0, s));
while (!q.empty())
{
P p = q.top();
q.pop();
int v = p.second;//点v
if (d[s][v] < p.first)
continue;
for (int i = 0; i < G[v].size(); i++)
{
edge e = G[v][i];//枚举与v相邻的点
if (d[s][e.to] > d[s][v] + e.cost)
{
d[s][e.to] = d[s][v] + e.cost;
q.push(P(d[s][e.to], e.to));
}
}
}
}
int main()
{
IOS;
while (cin >> N >> M)
{
for (int i = 0; i < N; i++)
{
int x, y, z;
cin >> x >> y >> z;
G[x].push_back(edge(y, z));
G[y].push_back(edge(x, z));
}
Dijk(1);
cout << d[1][M] << endl;
}
return 0;
}
floyd算法(TLE)
#include<cstring>
#include <iostream>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int inf = 1 << 29;
int map[1010][1010];//map[i][j]表示从i-->j的距离
int main()
{
int t, n, a, b, w;
while (~scanf("%d%d", &t, &n))
{
mem(map, 0);
//初始化
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i == j)
map[i][j] = 0;
else
map[i][j] = inf;//初始化为无穷大
//建立图
for (int i = 1; i <= t; i++){
scanf("%d%d%d", &a, &b, &w);
map[a][b] = map[b][a] = min(w, map[a][b]);//建立无向图
}//这里是判断是否有重边,应为两点之间的路,未必只有一条。
//弗洛伊德(Floyd)核心语句
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (map[i][k] + map[k][j] < map[i][j])
map[i][j] = map[i][k] + map[k][j];
printf("%d\n", map[1][n]);
}
return 0;
}
Bellman ford算法(AC 496ms。。)
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdio>
typedef long long ll;
//typedef unsigned long long ull;
using namespace std;
const int N = 1005, T = 4005;
int n, t;
int dis[N];
vector<vector<int> > gra(T, vector<int> (3)); //邻接表存储图
const int inf = 1 << 29;
void bellmanford() {
for (int i = 1; i <= n; ++i) {
dis[i] = inf;
}
dis[1] = 0;
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= t * 2; ++j) {
dis[gra[j][1]] = min(dis[gra[j][1]], dis[gra[j][0]] + gra[j][2]);
}
}
}
int main() {
scanf("%d%d", &t, &n);
for (int i = 0, index = 1; i < t; ++i) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
gra[index][0] = a, gra[index][1] = b, gra[index][2] = c; ++index;
gra[index][1] = a, gra[index][0] = b, gra[index][2] = c; ++index;
}
bellmanford();
printf("%d\n", dis[n]);
return 0;
}
spfa队列优化(bfs、AC 79ms)
//spfa
#include <vector>
#include <algorithm>
#include <cstdio>
#include <queue>
using namespace std;
const int N = 1005, T = 4005;
int n, t;
int dis[N], vis[N]; //dis数组存单元源点到其他各个点的距离
//vis存顶点v是否已经在队列当中以减少不必要的操作
vector<int> to[N], edge[N]; //邻接表分别存以i为下标的邻接的顶点和权值
const int inf = 1 << 29;
void spfa() {
queue<int> q;
for (int i = 1; i <= n; ++i) {
dis[i] = inf;
}
dis[1] = 0;
q.push(1);
while (!q.empty()) {
int u = q.front(); q.pop();
vis[u] = false;
for (int i = 0; i < to[u].size(); ++i) { //遍历邻接的顶点
int v = to[u][i], w = edge[u][i];
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
if (!vis[v]) {
vis[v] = true;
q.push(v);
}
}
}
}
}
int main() {
scanf("%d%d", &t, &n);
for (int i = 0; i < t; ++i) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
//无向图
to[a].push_back(b); edge[a].push_back(c);
to[b].push_back(a); edge[b].push_back(c);
}
spfa();
printf("%d\n", dis[n]);
return 0;
}
写完几种模板以后分析一下时间复杂度

参考资料
- 资料出自《啊哈算法》
POJ 2387 Til the Cows Come Home(最短路板子题,Dijkstra算法, spfa算法,Floyd算法,深搜DFS)的更多相关文章
- POJ 2387 Til the Cows Come Home --最短路模板题
Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...
- POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)
原题链接:Til the Cows Come Home 题目大意:有 个点,给出从 点到 点的距离并且 和 是互相可以抵达的,问从 到 的最短距离. 题目分析:这是一道典型的最短路径模版 ...
- POJ 2387 Til the Cows Come Home(最短路模板)
题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)
题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
- POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...
随机推荐
- 架构探索之路-第一站-clickhouse
一.前言 架构, 软件开发中最熟悉不过的名词, 遍布在我们的日常开发工作中, 大到项目整体, 小到功能组件, 想要实现高性能.高扩展.高可用的目标都需要优秀架构理念辅助. 所以本人尝试编写架构系列文章 ...
- LabVIEW基于机器视觉的实验室设备管理系统(2)
目录 功能计划 普通用户 欢迎登录 信息查询 返回退出程序 效果演示 在前期的准备完成之后呢,就要开始实现我们的程序啦,不过在编程之前,我们一定要计划好这个系统需要什么功能. 功能计划 既然我们做的是 ...
- vue禁止浏览器F5进行刷新和监听浏览器刷新事件
项目中有个这样的需求: 进入视频播放页后,添加一个标识,为了防止用户一次播放多个视频,当离开该页面后,如果是从当前正在播放的视频页面离开的,则离开播放页时清除标识,如果是不是则不清除,并且禁止用户按F ...
- 【驱动】串口驱动分析(二)-tty core
前言 tty这个名称源于电传打字节的简称,在linux表示各种终端,终端通常都跟硬件相对应.比如对应于输入设备键盘鼠标,输出设备显示器的控制终端和串口终端.也有对应于不存在设备的pty驱动.在如此众多 ...
- BI软件是什么?应用BI工具能给企业带来什么
BI软件是指利用数据挖掘.分析和可视化等技术,将企业内部和外部数据转化为有价值的信息和洞察,以帮助企业支持业务决策和优化业务流程的工具和应用程序.常见的BI软件包括Datainside.QlikVie ...
- Tomcat 配合虚拟线程,一种新的编程体验
Java 21 在今年早些时候的 9 月 19 日就正式发布,并开始正式引入虚拟线程,但是作为 Java 开发生态中老大哥 Spring 并没有立即跟进,而是在等待了两个月后的 11 月 29 日,伴 ...
- Android 图表开源库调研及使用示例
原文地址: Android图表开源库调研及使用示例 - Stars-One的杂货小窝 之前做的几个项目都是需要实现图表统计展示,于是做之前调研了下,做下记录 概述 AAChartCore-Kotlin ...
- 串ababaaababaa的next和串ababaabab的nextval
这个next求法我看了视频和网上的,发现有两种求法,一种是求最左边和最右边相等的最大个数, 就比如说串ababaaababaa,这个 所以这个3的位置为1,依次下来. 这个唯一要注意的是,是按照你选择 ...
- [USACO2007OPENS] City Horizon S
题目描述 Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the cit ...
- k8s安装etcd出现Job for etcd.service failed......"journalctl -xe" for details.
错误如下 先按照提示,输入 journalctl -xe 看一些详细信息 1.针对:start request repeated too quickly for etcd.service 错误,解决办 ...