DashVector x 通义千问大模型:打造基于专属知识的问答服务
本教程演示如何使用向量检索服务(DashVector),结合LLM大模型等能力,来打造基于垂直领域专属知识等问答服务。其中LLM大模型能力,以及文本向量生成等能力,这里基于灵积模型服务上的通义千问 API以及Embedding API来接入。
背景及实现思路
大语言模型(LLM)作为自然语言处理领域的核心技术,具有丰富的自然语言处理能力。但其训练语料库具有一定的局限性,一般由普适知识、常识性知识,如维基百科、新闻、小说,和各种领域的专业知识组成。导致 LLM 在处理特定领域的知识表示和应用时存在一定的局限性,特别对于垂直领域内,或者企业内部等私域专属知识。
实现专属领域的知识问答的关键,在于如何让LLM能够理解并获取存在于其训练知识范围外的特定领域知识。同时可以通过特定Prompt构造,提示LLM在回答特定领域问题的时候,理解意图并根据注入的领域知识来做出回答。在通常情况下,用户的提问是完整的句子,而不像搜索引擎只输入几个关键字。这种情况下,直接使用关键字与企业知识库进行匹配的效果往往不太理想,同时长句本身还涉及分词、权重等处理。相比之下,倘若我们把提问的文本,和知识库的内容,都先转化为高质量向量,再通过向量检索将匹配过程转化为语义搜索,那么提取相关知识点就会变得简单而高效。
接下来我们将基于中文突发事件语料库(CEC Corpus)演示关于突发事件新闻报道的知识问答。
整体流程

主要分为三个阶段:
本地知识库的向量化。通过文本向量模型将其转化为高质量低维度的向量数据,再写入DashVector向量检索服务。这里数据的向量化我们采用了灵积模型服务上的Embedding API实现。
相关知识点的提取。将提问文本向量化后,通过 DashVector 提取相关知识点的原文。
构造 Prompt 进行提问。将相关知识点作为“限定上下文+提问” 一起作为prompt询问通义千问。
前提准备
1. API-KEY 和 Cluster准备
开通灵积模型服务,并获得 API-KEY。请参考:开通DashScope并创建API-KEY。
开通DashVector向量检索服务,并获得 API-KEY。请参考:DashVector API-KEY管理。
开通DashVector向量检索服务,并创建Cluster。
获取Cluster的Endpoint,Endpoint获取请查看 Cluster详情。
说明
灵积模型服务DashScope的API-KEY与DashVector的API-KEY是独立的,需要分开获取。
2. 环境准备
说明
需要提前安装 Python3.7 及以上版本,请确保相应的 python 版本。
pip3 install dashvector dashscope
3. 数据准备
git clone https://github.com/shijiebei2009/CEC-Corpus.git
搭建步骤
说明
本教程所涉及的 your-xxx-api-key 以及 your-xxx-cluster-endpoint,均需要替换为您自己的API-KAY及CLUSTER_ENDPOINT后,代码才能正常运行。
1. 本地知识库的向量化
CEC-Corpus 数据集包含 332 篇突发事件的新闻报道的语料和标注数据,这里我们只需要提取原始的新闻稿文本,并将其向量化后入库。文本向量化的教程可以参考《基于向量检索服务与灵积实现语义搜索》。创建embedding.py文件,并将如下示例代码复制到embedding.py中:
点击查看代码
import os
import dashscope
from dashscope import TextEmbedding
from dashvector import Client, Doc
def prepare_data(path, batch_size=25):
batch_docs = []
for file in os.listdir(path):
with open(path + '/' + file, 'r', encoding='utf-8') as f:
batch_docs.append(f.read())
if len(batch_docs) == batch_size:
yield batch_docs
batch_docs = []
if batch_docs:
yield batch_docs
def generate_embeddings(news):
rsp = TextEmbedding.call(
model=TextEmbedding.Models.text_embedding_v1,
input=news
)
embeddings = [record['embedding'] for record in rsp.output['embeddings']]
return embeddings if isinstance(news, list) else embeddings[0]
if __name__ == '__main__':
dashscope.api_key = '{your-dashscope-api-key}'
# 初始化 dashvector client
client = Client(
api_key='{your-dashvector-api-key}',
endpoint='{your-dashvector-cluster-endpoint}'
)
# 创建集合:指定集合名称和向量维度, text_embedding_v1 模型产生的向量统一为 1536 维
rsp = client.create('news_embedings', 1536)
assert rsp
# 加载语料
id = 0
collection = client.get('news_embedings')
for news in list(prepare_data('CEC-Corpus/raw corpus/allSourceText')):
ids = [id + i for i, _ in enumerate(news)]
id += len(news)
vectors = generate_embeddings(news)
# 写入 dashvector 构建索引
rsp = collection.upsert(
[
Doc(id=str(id), vector=vector, fields={"raw": doc})
for id, vector, doc in zip(ids, vectors, news)
]
)
assert rsp
在示例中,我们将 Embedding 向量和新闻报道的文稿(作为raw字段)一起存入DashVector向量检索服务中,以便向量检索时召回原始文稿。
2. 知识点的提取
将 CEC-Corpus 数据集所有新闻报道写入DashVector服务后,就可以进行快速的向量检索。实现这个检索,我们同样将提问的问题进行文本向量化后,再在DashVector服务中检索最相关的知识点,也就是相关新闻报道。创建search.py文件,并将如下示例代码复制到search.py文件中。
点击查看代码
from dashvector import Client
from embedding import generate_embeddings
def search_relevant_news(question):
# 初始化 dashvector client
client = Client(
api_key='{your-dashvector-api-key}',
endpoint='{your-dashvector-cluster-endpoint}'
)
# 获取刚刚存入的集合
collection = client.get('news_embedings')
assert collection
# 向量检索:指定 topk = 1
rsp = collection.query(generate_embeddings(question), output_fields=['raw'],
topk=1)
assert rsp
return rsp.output[0].fields['raw']
3. 构造 Prompt 向LLM(通义千问)提问
在通过提问搜索到相关的知识点后,我们就可以将 “提问 + 知识点” 按照特定的模板作为 prompt 向LLM发起提问了。在这里我们选用的LLM是通义千问,这是阿里巴巴自主研发的超大规模语言模型,能够在用户自然语言输入的基础上,通过自然语言理解和语义分析,理解用户意图。可以通过提供尽可能清晰详细的指令(prompt),来获取更符合预期的结果。这些能力都可以通过通义千问API来获得。
具体我们这里设计的提问模板格式为:请基于我提供的内容回答问题。内容是{},我的问题是{},当然您也可以自行设计合适的模板。创建answer.py,并将如下示例代码复制到answer.py中。
点击查看代码
from dashscope import Generation
def answer_question(question, context):
prompt = f'''请基于```内的内容回答问题。"
```
{context}
```
我的问题是:{question}。
'''
rsp = Generation.call(model='qwen-turbo', prompt=prompt)
return rsp.output.text
知识问答
做好这些准备工作以后,就可以对LLM做与具体知识点相关的提问了。比如在 CEC-Corpus 新闻数据集里,有如下一篇报道。因为整个新闻数据集已经在之前的步骤里,转换成向量入库了,我们现在就可以把这个新闻报道作为一个知识点,做出针对性提问:海南安定追尾事故,发生在哪里?原因是什么?人员伤亡情况如何?,并查看相应答案。

创建run.py文件,并将如下示例代码复制到run.py文件中。
点击查看代码
import dashscope
from search import search_relevant_news
from answer import answer_question
if __name__ == '__main__':
dashscope.api_key = '{your-dashscope-api-key}'
question = '海南安定追尾事故,发生在哪里?原因是什么?人员伤亡情况如何?'
context = search_relevant_news(question)
answer = answer_question(question, context)
print(f'question: {question}\n' f'answer: {answer}')

可以看到,基于DashVector作为向量检索的底座,LLM大模型的知识范畴得到了针对性的扩展,并且能够对于专属的特定知识领域做出正确的回答。
写在最后
从本文的范例中,可以看到DashVector作为一个独立的向量检索服务,提供了开箱即用的强大向量检索服务能力,这些能力和各个AI模型结合,能够衍生多样的AI应用的可能。这里的范例中,LLM大模型问答,以及文本向量生成等能力,都是基于灵积模型服务上的通义千问API和Embedding API来接入的,在实际操作中,相关能力同样可以通过其他三方服务,或者开源模型社区,比如ModelScope上的各种开源LLM模型来实现。
免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector

DashVector x 通义千问大模型:打造基于专属知识的问答服务的更多相关文章
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- 千亿参数开源大模型 BLOOM 背后的技术
假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...
- AI大模型学习了解
# 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...
- 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...
- PowerDesigner 学习:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- 文心大模型api使用
文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...
- 大数据实时处理-基于Spark的大数据实时处理及应用技术培训
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的 ...
随机推荐
- 成长计划知识赋能 | 第九期:渐进式深入理解OpenHarmony系统
成长计划知识赋能直播第九期如约而至,面向OpenHarmony初中级开发者,解析OpenHarmony系统架构和驱动框架,助力开发者快速上手OpenHarmony系统开发. 详情见海报内容,资深软 ...
- cesiumjs GIS引擎源码编译并运行-2021年3月18日最新版【1.68~1.79.1版本亲测成功】
前言 本篇最初是在2020年的[macOS Big Sur + Cesium 1.76版本]下编译成功,后在[macOS Catalina+cesium 1.79.1版本]编译过程中,出现编译的错误和 ...
- js es6系列——map函数
正文 map,必要解释就是map不是地图的意思,而是映射的意思. 这里就简单的介绍了这个map了. array.map(callback,[ thisObject]); 看下这个案例后,我们发现了就发 ...
- 重新整理数据结构与算法(c#)—— 树的节点删除[十八]
前言 你好这里的一个删除,指的是如果删除的叶子节点则直接删除,如果删除的是非叶子节点,则删除的是这颗子树. 这样删除的场景并不多,这种删除方式了解即可. 十七和十六没有放树图,把树图放一下. 正文 节 ...
- Jedis连接踩坑日记
Jedis连接踩坑日记 背景: 线上某块业务的增删改功能全部都不可用.页面发送了xhr请求之后 状态一直处于pending状态,后端没有日志产生 排查路线与解决办法 第一:由于服务在内网里面,无法进行 ...
- pid算法函数实现,c语言版
#include <stdio.h> float pid(float setpoint, float process_variable, float kp, float ki, float ...
- DBJ,DB,CJJ,CECS 标准区别及全套下载教程
DBJ DBJ开头的标准是地方建筑标准:D--地方. B--标准. J--建筑. <中华人民共和国标准化法>将中国标准分为国家标准.行业标准.地方标准(DB).企业标准(Q/)四级.地方标 ...
- 很强!4.7k star,推荐一款Python工具,可实现自动化操作!!
1.介绍 在日常工作中,肯定会遇到一些重复性的工作,不管是点击某个按钮.写东西,打印东西,还是复制粘贴拷贝资料之类的,需要进行大量的重复操作.按键精灵大家都听说过,传统的方式,大家可以使用按键精灵将操 ...
- 阿里云交互式分析与Presto对比分析及使用注意事项
阿里云交互式分析与Presto对比分析及使用注意事项本文由阿里巴巴耿江涛带来以"阿里云交互式分析与Presto对比分析及使用注意事项"为题的演讲.文章首先介绍了Presto以及它的 ...
- 如何落地云原生DevOps?
简介: 什么是云原生DevOps?在阿里内部有怎样的实践?企业又该如何落地?阿里云云效专家团队提出了下一代精益产品开发方法体系--ALPD,提供了系统的云原生DevOps落地的方法支撑,帮助企业渐进式 ...