题目

求最小的正整数 \(x\) 满足 \(g^{ax+b}\equiv c\pmod p\)

其中 \(p\) 是一个质数, \(g,a,b,c\leq 10^{1000000},p\leq 2^{31}\)


分析

先将 \(g^a\)和 \(g^b\) 用费马小定理求出来,

问题就转换成 \(b'\times {a'}^x\equiv c'\pmod p\)

这个直接套用 BSGS 就可以了


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <cstring>
#define rr register
using namespace std;
const int p=70001; typedef long long lll;
const int N=1000011; char A[N],B[N],C[N],G[N];
lll mod,lA,lB,lC,ans,lG,a,b,c,g;
struct Linked_Hash{
struct node{int y,w,next;}E[p]; int Et,hs[p];
inline void Clear(){Et=0,memset(hs,-1,sizeof(hs));}
inline void Insert(int w,int x){E[++Et]=(node){x,w,hs[w%p]},hs[w%p]=Et;}
inline signed locate(int W){
for (rr int i=hs[W%p];~i;i=E[i].next)
if (E[i].w==W) return E[i].y;
return -1;
}
}ha;
inline lll gcd(lll x,lll y){return y?gcd(y,x%y):x;}
inline lll exBSGS(lll a,lll c,lll b,lll mod){
ha.Clear();
rr lll GCD=gcd(a,mod),t=1;
rr lll CNT=0,ir=sqrt(mod)+1;
while (GCD>1){
if (b%GCD||c%GCD) return -1;
b/=GCD,c/=GCD,mod/=GCD,
t=t*(a/GCD)%mod,
GCD=gcd(a,mod),++CNT;
if (b==t*c%mod) return CNT;
}
rr lll now=1;
for (rr int i=0;i<ir;++i)
ha.Insert(now*b%mod,i),now=now*a%mod;
a=now,now=t;
if (!a) return !b?1:-1;
for (rr int i=0;i<=ir;++i){
rr int j=ha.locate(now*c%mod);
if (j>=0&&i*ir+CNT>j) return i*ir+CNT-j;
now=now*a%mod;
}
return -1;
}
inline lll ksm(lll x,lll y){
rr lll ans=1;
for (;y;y>>=1,x=x*x%mod)
if (y&1) ans=ans*x%mod;
return ans;
}
signed main(){
scanf("%s%s%s%s%lld",A+1,B+1,C+1,G+1,&mod);
lA=strlen(A+1),lB=strlen(B+1),lC=strlen(C+1),lG=strlen(G+1);
for (rr int i=1;i<=lG;++i) g=(g*10+G[i]-48)%mod;
for (rr int i=1;i<=lC;++i) c=(c*10+C[i]-48)%mod;
for (rr int i=1;i<=lA;++i) a=(a*10+A[i]-48)%(mod-1);
for (rr int i=1;i<=lB;++i) b=(b*10+B[i]-48)%(mod-1);
a=ksm(g,a),b=ksm(g,b),ans=exBSGS(a,b,c,mod);
if (ans==-1) printf("no solution");
else printf("%lld",ans);
return 0;
}

#费马小定理,BSGS#BZOJ 3285 离散对数解指数方程的更多相关文章

  1. bzoj 3285 离散对数解指数方程

    /************************************************************** Problem: 3285 User: idy002 Language: ...

  2. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  3. BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)

    题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...

  4. 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...

  5. bzoj 1951 lucas crt 费马小定理

    首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod  (p-1)) mod p 那么问题的关键就 ...

  6. BZOJ 3240 [Noi2013]矩阵游戏 ——费马小定理 快速幂

    发现是一个快速幂,然而过不去. 怎么办呢? 1.十进制快速幂,可以用来练习卡时. 2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数. 然后就是分类讨论 ...

  7. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  8. nyoj1000_快速幂_费马小定理

    又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...

  9. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  10. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. django中如果不是第一次迁移的时候就配置AUTH_USER_MODEL(用来告知django认证系统识别我们自定义的模型类),那么该如何解决才能让django的认证系统识别且不会报未知错误?

    Django认证系统中提供的用户模型类及方法很方便,我们可以使用这个模型类,但是字段有些无法满足项目需求,如还需要保存用户的手机号,需要给模型类添加额外的字段. Django提供了django.con ...

  2. 【转载】Java并发之AQS详解

    一.概述 谈到并发,不得不谈ReentrantLock:而谈到ReentrantLock,不得不谈AbstractQueuedSynchronizer(AQS)! 类如其名,抽象的队列式的同步器,AQ ...

  3. 【简历模板】极简Markdown程序员简历模板

    前言 最近在找工作,一份好的简历是敲门砖,所以跟大家分享下简洁明了大方MarkDown的简历模板和在线编辑工具 在线工具 冷熊 Java工程师简历模板 下载 点击下载 预览 个人信息 xxx/男/19 ...

  4. C++ //内建函数对象 算数仿函数 关系仿函数 //逻辑仿函数

    1 //内建函数对象 算数仿函数 关系仿函数 //逻辑仿函数 2 #include<iostream> 3 #include<string> 4 #include<fun ...

  5. 青少年CTF训练平台-web部分随笔

    文章管理系统 首先打开环境(>ω<。人)ZZz♪♪ 既然要做题,就要做全面了,图上说了,既然有假flag我就先找出来: 假flag: 打开vmware,使用sqlmap进行处理: sqlm ...

  6. 安卓插耳机也外放扬声器播放音频的java代码

    最近遇到一个如何在耳机插入的情况下任然用扬声器播放音频的问题. 用搜索引擎找了一些网上的demo(案例) .发现按照他们的方法成功实现. 插入耳机的时候也可以选择使用扬声器播放音乐,来电铃声就是这么用 ...

  7. 2、zookeeper的简单命令

    Zookeeper的常用命令本篇不包括权限acl相关以及集群相关,那些要另开篇章.使用的版本是Zookeeper3.4.14,不同版本会有一定的差异性. 节点的存储信息 新增命令 语法:create ...

  8. RAPTOR 一种基于树的RAG方法,RAG的准确率提高 20%

    一种理解整个文档上下文的新颖的 RAG 方法 RAG 是当前使用LLM的标准方法,大多数现有方法仅从检索语料库中检索短的连续块,限制了对整个文档上下文的整体理解. 最近,一种名为 RAPTOR (Re ...

  9. t w 不连读,只不过离得很近 twins twelve 单词发音

    t w 不连读,只不过离得很近 twins twelve

  10. vue3 markdown 读取文件的两种方法 有gitee发布地址

    方法一: markdown-loader html-loader import的时候就转换成html了,每次需要build,但是可以本地双击就能看,放哪个目录页不限制 方法二: axios + mar ...