concurrent.futures
concurrent.futures
concurrent.futures提供高层次的接口,用来实现异步调用。
这个异步执行可以使用threads(ThreadPoolExecutor)或者process(ProcessPoolExecutor)
这个feautre是Python3.2后的新功能,但是也支持Python2。
需要安装futures模块,https://pypi.python.org/pypi/futures/2.1.4
【例子1】非并发的例子
#!/usr/bin/env python2.6 from Queue import Queue
import random
import time q = Queue()
fred = [1,2,3,4,5,6,7,8,9,10] def f(x):
if random.randint(0,1):
time.sleep(0.1)
#
res = x * x
q.put(res) def main():
for num in fred:
f(num)
#
while not q.empty():
print q.get() if __name__ == "__main__":
main()
【例子2】使用ThreadPoolExecutor
#!/usr/bin/env python2.7 from Queue import Queue
import concurrent.futures
import random
import time q = Queue()
fred = [1,2,3,4,5,6,7,8,9,10] def f(x):
if random.randint(0,1):
time.sleep(0.1)
#
res = x * x
q.put(res) def main():
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
for num in fred:
executor.submit(f, num)
#
while not q.empty():
print q.get() #################### if __name__ == "__main__":
main()
使用线程池中4个workers处理所有job。
with的语句保证所有线程都执行完成后,再进行下面的操作。
结果保持在一个队列中,队列是线程安全的。
. “The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Queue class in this module implements all the required locking semantics.“
队列模块实现多个生产者,多个消费者模式。特别在多线程之间进行信息交换的场景下最长使用。在这个模块下Queue类实现了所有需要的锁信息。
【例子3】使用ProcessPoolExecutor
“The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.“
ProcessPoolExecute是Executor的子类,使用进程池实现异步调用。ProcessPoolExecute使用多进程模块,允许规避 Global Interpreter Lock,但是只有处理和返回picklable的对象。
#!/usr/bin/env python2.7 import sys
import redis
import concurrent.futures r = redis.Redis()
fred = [1,2,3,4,5,6,7,8,9,10] def check_server():
try:
r.info()
except redis.exceptions.ConnectionError:
print >>sys.stderr, "Error: cannot connect to redis server. Is the server running?"
sys.exit(1) def f(x):
res = x * x
r.rpush("test", res) def main():
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
for num in fred:
executor.submit(f, num)
#
print r.lrange("test", 0, -1) #################### if __name__ == "__main__":
check_server()
###
r.delete("test")
main()
使用到redis链表的数据结构
Queue is not a good choice here because we are using processes here, and Queue is made for threads.
Queue不是一个好的选择,因为这里使用process。Queue是为线程准备的。
所以这里将结果存储在redis的list中,redis: getting started
在redis中所有的操作都是原子的,因此对于不同的进程可以安全写入相关的结果。
【测试】
1、把源数据设置为range(1,1000)之后,测试效果如下:
[root@typhoeus79 20140811]# time ./basic.py real 0m49.388s
user 0m0.024s
sys 0m0.013s
[root@typhoeus79 20140811]# time ./thread.py real 0m12.687s
user 0m0.103s
sys 0m0.061s
[root@typhoeus79 20140811]# time ./process.py real 0m0.507s
user 0m0.557s
sys 0m0.343s
【适应场景】
Threads are good for I/O tasks, while processes are good for CPU-bound tasks.
【Executor】
class concurrent.futures.Executor
An abstract class that provides methods to execute calls asynchronously. It should not be used directly, but through its concrete subclasses
Executor是一个抽象的类,提供执行异步调用的方法。不能直接调用,而是通过具体的子类来调用。
ThreadPoolExecutor和ProcessPoolExecutor都是其的子类。
submit(fn, *args, **kwargs) Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a Future object representing the execution of the callable.
执行函数fn(*args,**kwargs),返回一个Future对象,代表可调用的执行。
>>> with ThreadPoolExecutor(max_workers=1) as executor:
... future = executor.submit(pow, 323, 1235)
... print(future)
...
<Future at 0x7f1e7d053e10 state=finished returned long>
#打印结果
>>> with ThreadPoolExecutor(max_workers=1) as executor:
... future = executor.submit(pow, 323, 1235)
... print(future.result())
map(func, *iterables, timeout=None)
Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to func may be made concurrently. The returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after timeout seconds from the original call to Executor.map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from the iterator.
并发执行func,参数为iterables指定。timeout可以指定为int或者float类型,如果没有指定或者None,则无限等待。如果触发异常,当从iterator获取值的时候,这个异常将被捕获。
shutdown(wait=True)
Signal the executor that it should free any resources that it is using when the currently pending futures are done executing. Calls to Executor.submit() and Executor.map() made after shutdown will raise RuntimeError.
释放资源使用。
使用with语句,避免该函数的调用,with语句会关闭所有的Executor。
>>> with ThreadPoolExecutor(max_workers=4) as e:
... e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
... e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
... e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
... e.submit(shutil.copy, 'src3.txt', 'dest4.txt')
...
<Future at 0x7f1e79191250 state=running>
<Future at 0x7f1e79191450 state=finished raised IOError>
<Future at 0x7f1e79191250 state=running>
<Future at 0x7f1e79191450 state=finished raised IOError>
【参考文献】
1、https://pythonadventures.wordpress.com/tag/threadpoolexecutor/
2、https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures
concurrent.futures的更多相关文章
- Python标准模块--concurrent.futures
1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...
- 在python中使用concurrent.futures实现进程池和线程池
#!/usr/bin/env python # -*- coding: utf-8 -*- import concurrent.futures import time number_list = [1 ...
- python简单粗暴多进程之concurrent.futures
python在前面写过多线程的库threading: python3多线程趣味详解 但是今天发现一个封装得更加简单暴力的多进程库concurrent.futures: # !/usr/bin/pyth ...
- 45、concurrent.futures模块与协程
concurrent.futures —Launching parallel tasks concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...
- python concurrent.futures
python因为其全局解释器锁GIL而无法通过线程实现真正的平行计算.这个论断我们不展开,但是有个概念我们要说明,IO密集型 vs. 计算密集型. IO密集型:读取文件,读取网络套接字频繁. 计算密集 ...
- 进程池与线程池(concurrent.futures)
from concurrent.futures import ProcessPoolExecutor import os,time,random def task(n): print('%s is r ...
- python异步并发模块concurrent.futures入门详解
concurrent.futures是一个非常简单易用的库,主要用来实现多线程和多进程的异步并发. 本文主要对concurrent.futures库相关模块进行详解,并分别提供了详细的示例demo. ...
- Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...
- 线程池、进程池(concurrent.futures模块)和协程
一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 Pro ...
随机推荐
- sublime text注册码(秘钥)
—– BEGIN LICENSE —– TwitterInc 200 User License EA7E-890007 1D77F72E 390CDD93 4DCBA022 FAF60790 61AA ...
- ubuntu中安装ftp服务器
1. 实验环境 ubuntu14.04 2.vsftpd介绍 vsftpd 是“very secure FTP daemon”的缩写,是一款在Linux发行版中最受推崇的FTP服务器程序,安全性是它的 ...
- JS封装运动框架(另一种写法)
function animate(obj, json, interval, sp, fn) { clearInterval(obj.timer); //var k = 0; //var j = 0; ...
- nginx 部署
安装nginx 1)安装pcre 从pcre的官网下载tar.gz包,官网地址为:https://sourceforge.NET/projects/pcre/files/pcre/,在这里我下载的是: ...
- 扩展jquery.validate自定义验证,自定义提示,本地化
<!DOCTYPE html> <html> <head> <meta name="viewport" content="wid ...
- Django Cookie 和 Sessions 应用
在Django里面,使用Cookie和Session看起来好像是一样的,使用的方式都是request.COOKIES[XXX]和request.session[XXX],其中XXX是您想要取得的东西的 ...
- MYSQL数据库45道练习题
--第一题查询Student表中的所有记录的Sname.Ssex和Class列.select Sname,Ssex,Class from Student;--第二题查询教师所有的单位即不重复的Depa ...
- spring容器启动原理分析1
在项目的web.xml中配置 <listener> <listener-class>org.springframework.web.context.ContextLoaderL ...
- win10 uwp 验证输入 自定义用户控件
TextBox是给用户输入,我们有时要用户只输入数字,而用户输入汉字,我们就有提示用户,那么这东西用到次数很多,我们需要做成一个控件. 我们可以用别人的库,我找到一个大神写的库,很好用 我们使用这个库 ...
- 简易RPC框架-客户端限流配置
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...