concurrent.futures
concurrent.futures
concurrent.futures提供高层次的接口,用来实现异步调用。
这个异步执行可以使用threads(ThreadPoolExecutor)或者process(ProcessPoolExecutor)
这个feautre是Python3.2后的新功能,但是也支持Python2。
需要安装futures模块,https://pypi.python.org/pypi/futures/2.1.4
【例子1】非并发的例子
#!/usr/bin/env python2.6 from Queue import Queue
import random
import time q = Queue()
fred = [1,2,3,4,5,6,7,8,9,10] def f(x):
if random.randint(0,1):
time.sleep(0.1)
#
res = x * x
q.put(res) def main():
for num in fred:
f(num)
#
while not q.empty():
print q.get() if __name__ == "__main__":
main()
【例子2】使用ThreadPoolExecutor
#!/usr/bin/env python2.7 from Queue import Queue
import concurrent.futures
import random
import time q = Queue()
fred = [1,2,3,4,5,6,7,8,9,10] def f(x):
if random.randint(0,1):
time.sleep(0.1)
#
res = x * x
q.put(res) def main():
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
for num in fred:
executor.submit(f, num)
#
while not q.empty():
print q.get() #################### if __name__ == "__main__":
main()
使用线程池中4个workers处理所有job。
with的语句保证所有线程都执行完成后,再进行下面的操作。
结果保持在一个队列中,队列是线程安全的。
. “The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Queue class in this module implements all the required locking semantics.“
队列模块实现多个生产者,多个消费者模式。特别在多线程之间进行信息交换的场景下最长使用。在这个模块下Queue类实现了所有需要的锁信息。
【例子3】使用ProcessPoolExecutor
“The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.“
ProcessPoolExecute是Executor的子类,使用进程池实现异步调用。ProcessPoolExecute使用多进程模块,允许规避 Global Interpreter Lock,但是只有处理和返回picklable的对象。
#!/usr/bin/env python2.7 import sys
import redis
import concurrent.futures r = redis.Redis()
fred = [1,2,3,4,5,6,7,8,9,10] def check_server():
try:
r.info()
except redis.exceptions.ConnectionError:
print >>sys.stderr, "Error: cannot connect to redis server. Is the server running?"
sys.exit(1) def f(x):
res = x * x
r.rpush("test", res) def main():
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
for num in fred:
executor.submit(f, num)
#
print r.lrange("test", 0, -1) #################### if __name__ == "__main__":
check_server()
###
r.delete("test")
main()
使用到redis链表的数据结构
Queue is not a good choice here because we are using processes here, and Queue is made for threads.
Queue不是一个好的选择,因为这里使用process。Queue是为线程准备的。
所以这里将结果存储在redis的list中,redis: getting started
在redis中所有的操作都是原子的,因此对于不同的进程可以安全写入相关的结果。
【测试】
1、把源数据设置为range(1,1000)之后,测试效果如下:
[root@typhoeus79 20140811]# time ./basic.py real 0m49.388s
user 0m0.024s
sys 0m0.013s
[root@typhoeus79 20140811]# time ./thread.py real 0m12.687s
user 0m0.103s
sys 0m0.061s
[root@typhoeus79 20140811]# time ./process.py real 0m0.507s
user 0m0.557s
sys 0m0.343s
【适应场景】
Threads are good for I/O tasks, while processes are good for CPU-bound tasks.
【Executor】
class concurrent.futures.Executor
An abstract class that provides methods to execute calls asynchronously. It should not be used directly, but through its concrete subclasses
Executor是一个抽象的类,提供执行异步调用的方法。不能直接调用,而是通过具体的子类来调用。
ThreadPoolExecutor和ProcessPoolExecutor都是其的子类。
submit(fn, *args, **kwargs) Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a Future object representing the execution of the callable.
执行函数fn(*args,**kwargs),返回一个Future对象,代表可调用的执行。
>>> with ThreadPoolExecutor(max_workers=1) as executor:
... future = executor.submit(pow, 323, 1235)
... print(future)
...
<Future at 0x7f1e7d053e10 state=finished returned long>
#打印结果
>>> with ThreadPoolExecutor(max_workers=1) as executor:
... future = executor.submit(pow, 323, 1235)
... print(future.result())
map(func, *iterables, timeout=None)
Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to func may be made concurrently. The returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after timeout seconds from the original call to Executor.map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from the iterator.
并发执行func,参数为iterables指定。timeout可以指定为int或者float类型,如果没有指定或者None,则无限等待。如果触发异常,当从iterator获取值的时候,这个异常将被捕获。
shutdown(wait=True)
Signal the executor that it should free any resources that it is using when the currently pending futures are done executing. Calls to Executor.submit() and Executor.map() made after shutdown will raise RuntimeError.
释放资源使用。
使用with语句,避免该函数的调用,with语句会关闭所有的Executor。
>>> with ThreadPoolExecutor(max_workers=4) as e:
... e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
... e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
... e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
... e.submit(shutil.copy, 'src3.txt', 'dest4.txt')
...
<Future at 0x7f1e79191250 state=running>
<Future at 0x7f1e79191450 state=finished raised IOError>
<Future at 0x7f1e79191250 state=running>
<Future at 0x7f1e79191450 state=finished raised IOError>
【参考文献】
1、https://pythonadventures.wordpress.com/tag/threadpoolexecutor/
2、https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures
concurrent.futures的更多相关文章
- Python标准模块--concurrent.futures
1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...
- 在python中使用concurrent.futures实现进程池和线程池
#!/usr/bin/env python # -*- coding: utf-8 -*- import concurrent.futures import time number_list = [1 ...
- python简单粗暴多进程之concurrent.futures
python在前面写过多线程的库threading: python3多线程趣味详解 但是今天发现一个封装得更加简单暴力的多进程库concurrent.futures: # !/usr/bin/pyth ...
- 45、concurrent.futures模块与协程
concurrent.futures —Launching parallel tasks concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...
- python concurrent.futures
python因为其全局解释器锁GIL而无法通过线程实现真正的平行计算.这个论断我们不展开,但是有个概念我们要说明,IO密集型 vs. 计算密集型. IO密集型:读取文件,读取网络套接字频繁. 计算密集 ...
- 进程池与线程池(concurrent.futures)
from concurrent.futures import ProcessPoolExecutor import os,time,random def task(n): print('%s is r ...
- python异步并发模块concurrent.futures入门详解
concurrent.futures是一个非常简单易用的库,主要用来实现多线程和多进程的异步并发. 本文主要对concurrent.futures库相关模块进行详解,并分别提供了详细的示例demo. ...
- Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...
- 线程池、进程池(concurrent.futures模块)和协程
一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 Pro ...
随机推荐
- Python tkinter调整元件在窗口中的位置与几何布局管理
Tkinter中的GUI总是有一个root窗口,不管你是主动或者别动获得.主窗口就是你的程序开始运行的时候创建的,在主窗口中你通常是放置了你主要的部件.另外,Tkinter脚本可以依据需要创建很多独立 ...
- HDU1411 欧拉四面体
用向量解决: 三角形面积:S=1/2*|x1*y2-x2*y1|; (粗体表示向量) 三棱锥体积:V=1/6*(OA*OB)*OC 不知道哪里去找的代码,毕竟很线性代数矩阵什么的很头疼,晚上 ...
- HDU1305 Immediate Decodability(水题字典树)
巧了,昨天刚刚写了个字典树,手到擒来,233. Problem Description An encoding of a set of symbols is said to be immediatel ...
- 为选择屏幕的字段设置F4帮助
在没有参考 数据元素,域和搜索帮助的情况下,自定义F4 帮助 1,PARAMETERS: p_bukrs(4) TYPE C MATCHCODE OBJECT H_T001. 2,AT SELECTI ...
- 简易RPC框架-客户端限流配置
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- 使用脚本监控windows服务的方法
以下脚本可监控某一个windows服务,发现其停止就立即重启之. @echo off rem 定义循环间隔时间和监测的服务: set secs=60 set srvname="NetWin ...
- 【八】php三大流程控制总结
1.顺序控制---不加控制的流程,默认按照顺序来执行你编写的代码 2.分支控制--有选择的来执行代码 单分支 语法:if(条件表达式){语句:} 快速入门 $age=150; if($age>1 ...
- 跨站请求伪造(CSRF)-简述
跨站请求伪造(CSRF)-简述 跨站请求伪造(英语:Cross-site request forgery),也被称为 one-click attack 或者 session riding,通常缩写为 ...
- 关于Python输出时间戳的问题
在我们的程序中,有时候想要知道程序的执行时间或者准确的停止时间,这时候就需要我们自己添加一个时间戳,以便我们做出判断和相应的处理. 下面是我亲测并收集的资料,菜鸟一枚,不全之处大神可给予补充和指正. ...
- [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...