参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》。

1. AlexNet(Krizhevsky et al. 2012),8层网络。

  学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量。每个filter的通道数等于输入的通道数。卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量。池化层没有需要学习的参数。

  图中分成两个通道是为了在不同GPU上处理。

  2013年的ZFNet延续了AlexNet的架构(也是8层网络),优化了参数,取得了更好的效果(错误率从16.4%降到11.7%)。

2. VGGNet(Simonyan and Zisserman, 2014),16~19层网络。

  三个3*3的filter串联等价于一个7*7的filter,用更小的filter的好处是增加了网络的深度,增加了非线性程度,更少的参数。

3. GoogLeNet(Szegedy et al., 2014)

  Inception module是同时用不同的filter(1*1,3*3,5*5,Pooling),并把结果堆叠起来。这样做的缺点是计算量变大。解决的办法是先用1*1的卷积压缩通道数量(参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》)。

4. ResNet(He et al., 2015),152层网络。

  解决了很深的网络难优化的问题。

  对于深度的网络(ResNet-50+),类似GoogLeNet用1*1的卷积层去压缩通道数以提高效率。

5. 复杂度的比较

6. 其他一些网络

  Network in Network (NiN)(Lin et al., 2014):启发了GoogLeNet和ResNet的“bottleneck”层(1*1卷积层)。

  Identity Mappings in Deep Residual Networks (He et al., 2016):ResNet的改进。

  Wide Residual Networks (Zagoruyko et al., 2016):认为residuals是很重要的,而不是深度。增加宽度而不是深度,会计算更有效。50层的宽的ResNet比152层的原始的ResNet更好。

  ResNeXt (Xie et al., 2016):也是增加宽度,和Inception module很类似的想法。

  Deep Networks with Stochastic Depth (Huang et al., 2016):为了解决梯度消失的问题,随机地drop掉一些层。在测试阶段使用全部的网络,不drop任何层。

  FractalNet (Larsson et al., 2017):认为residual不是必须的,重要的是浅层到深层的有效传递(transitioning),训练阶段也是随机drop掉一些层,测试阶段不drop任何层。

  Densely Connected Convolutional Networks (Huang et al., 2017):为了解决梯度消失的问题,每一层与其他层更稠密的连接。

  SqueezeNet (Landola et al., 2017):更少的参数,更好的准确度。

7. 总结

  VGG、GoogLeNet、ResNet被广泛应用,现在已经是集成到各个现成框架。

  ResNet是当今最佳,默认选项。

  趋势是越来越深的网络。

  很多研究集中在设计层与层之间的连接方式,为了改善梯度的传播。

  最新的研究在争论深度和宽度,以及residual的必要性。

cs231n spring 2017 lecture9 CNN Architectures 听课笔记的更多相关文章

  1. cs231n spring 2017 lecture9 CNN Architectures

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  2. cs231n spring 2017 lecture13 Generative Models 听课笔记

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  3. cs231n spring 2017 lecture14 Reinforcement Learning 听课笔记

    (没太听明白,下次重新听) 1. 增强学习 有一个 Agent 和 Environment 交互.在 t 时刻,Agent 获知状态是 st,做出动作是 at:Environment 一方面给出 Re ...

  4. cs231n spring 2017 lecture2 Image Classification 听课笔记

    1. 相比于传统的人工提取特征(边.角等),深度学习是一种Data-Driven Approach.深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体.而人工提取特征的方式很脆弱,换一个物体 ...

  5. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  6. cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...

  7. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  8. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

    1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...

  9. cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记

    这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...

随机推荐

  1. Bat脚本命令说明

    命名参考 使用方式如果不知道如何使用就到cmd窗口键入help 命名名 例如:"help del" 命令名 注释 ASSOC 显示或修改文件扩展名关联. ATTRIB 显示或更改文 ...

  2. CentOS ifconfig无IP地址解决办法

    修改/etc/sysconfig/network-scripts/ifcfg-ens33 把 ONBOOT 改为 yes,重启后就会有ip,且物理机和虚拟机可以互相ping通了.

  3. 【java】用HashMap计数,用TreeSet排序

    package com.tn.hashMap; import java.util.HashMap; import java.util.TreeSet; public class HashMapDemo ...

  4. vue vuex vue-rouert后台项目——权限路由(超详细简单版)

    项目地址:vue-simple-template共三个角色:adan barbara carrie 密码全是:123456 adan 拥有 最高权限A 他可以看到 red , yellow 和 blu ...

  5. ArcGIS 网络分析[8] ArcObjects二次开发之底层网络分析开发

    基于现有的线要素类.转弯要素类(在地理数据库的要素数据集中),要用AO做两件事: 1. 创建网络数据集(使用Geodatabase类库) 2. 执行网络分析(使用NetworkAnalyst类库) 在 ...

  6. Python学习(五):易忘知识点

    1.列表比较函数cmp >>> a = [1,2,3,4] >>> b = [1,2,3,4,5] >>> c = [1,2,3,4] >& ...

  7. 文件上传之伪Ajax方式上传

    From: <由 Windows Internet Explorer 8 保存> Subject: =?gb2312?B?zsS8/snPtKvWrs6xQWpheLe9yr3Jz7SrI ...

  8. JavaScript函数(二)

    在前面我们已经对函数作了简单的介绍,比如函数的定义.函数的声明.函数的调用和函数的传参等.本节将进一步介绍函数的应用,深度理解函数的各种使用. 函数是一个对象,每个函数时Function类型的一个实例 ...

  9. HTTPS加密流程超详解(二)

    2.进入正题 上篇文章介绍了如何简单搭建一个环境帮助我们分析,今天我们就进入正题,开始在这个环境下分析. 我们使用IE浏览器访问Web服务器根目录的test.txt文件并抓包,可以抓到如下6个包(前面 ...

  10. shader 2 : use shaderToy in unity

    shadertoy 原型,https://www.shadertoy.com/view/XslGRr 先说几个概念 Shader language目前有3种主流语言:基于OpenGL的GLSL(Ope ...