Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 250714    Accepted Submission(s): 59365

Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
 
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4 Case 2:
7 1 6
Author
Ignatius.L
初来乍到,动态规划也是刚刚接触。刚开始用暴力法,Time limit……

在网上搜了代码。大多是只说是动态规划经典问题、求最大子序列和,然后就是一串代码。最好的就是带了几行注释…没有太多通俗的解释…硬着头皮看了一晚上,终于算是有了眉目想通了。

在这里写下自己对这个动态规划求最大子序列和的理解,通俗一点的解释。(只是个人的理解哦,仅供参考)
这里的求最大子序列和应该是变种了吧,呵呵,还要加上最大子序列的起始和终止位置……只要知道怎么求最大子序列和,那么附加个位置应该不难的。
 
 
先来看代码:
     #include <iostream>
using namespace std;
int main()
{
int j,i,k,n,m,t;
int a[];
scanf("%d",&t);
for (j=;j<=t;j++)
{
scanf("%d",&n);
for (i=;i<n;i++)
{
scanf("%d",&a[i]);
}
int sum=,maxsum=-,first =, last = , temp = ;
for (i=;i<n;i++)
{
sum += a[i];
if (sum > maxsum)
{
maxsum = sum;first = temp;last = i+;
}
if (sum < )
{
sum = ;temp = i+;
}
} printf("Case %d:\n%d %d %d\n",j,maxsum,first,last);
if (j!=t)
{
printf("\n");
}
} return ;
}
本想用通俗的话语来解释这个道理,结果发现,通俗了以后就非文字所能描述的好的了,需要各种的手势+纸笔画一阵子,无奈表达能力有限,只好……只好用这样的看似非常严密的数学推理来说明了(囧)
 
对于整个序列a[n]来说,它的所有子序列有很多很多,但是可以将它们归类。
注意,是以**结尾的子序列,其中肯定是要包含**的了
 
以a[0]结尾的子序列只有a[0]
以a[1]结尾的子序列有 a[0]a[1]和a[1]
以a[2]结尾的子序列有 a[0]a[1]a[2] / a[1]a[2] / a[2]
……
以a[i]结尾的子序列有a[0]a[1]……a[i-2]a[i-1]a[i]  / a[1]a[2]……a[i-2]a[i-1]a[i] /  a[2]a[3]……a[i-2]a[i-1]a[i] / …… /  a[i-1]a[i] / a[i]
 
所有以a[0] ~a[n]结尾的子序列分组构成了整个序列的所有子序列。
 
这样,我们只需求以a[0]~a[n]结尾的这些分组的子序列中的每一分组的最大子序列和。然后从n个分组最大子序列和中选出整个序列的最大子序列和。
 
观察可以发现,0,1,2,……,n结尾的分组中,
maxsum a[0] = a[0]
maxsum a[1] = max( a[0] + a[1] ,a[1])  = max( maxsum a[0] + a[1] ,a[1]) 
maxsum a[2] = max( max ( a[0] + a[1] + a[2],a[1] + a[2] ),a[2])  
= max(  max( a[0] + a[1] ,a[1]) + a[2] , a[2]) 
= max(  maxsum a[1] + a[2] , a[2])
……
依此类推,可以得出通用的式子。
maxsum a[i] = max( maxsum a[i-1] + a[i],a[i])
 
 
用递归……当然,不递归也应该是可以解决的。
 
我们从maxsum  a[0]开始算起。
以后的每个就是  maxsum a[i-1] + a[i] 和 a[i] 中取大的那个。
 
程序中判断 前一个的最大子序列和小于零时,将其置为0,然后再加a[i] ,这样不就是和a[i] 一样大的么;前一个的最大子序列和只要大于零,那么再加上a[i] 肯定比 a[i] 要大,这样,带有归零的这个 maxsum a[i-1] + a[i] 就是以表示当前位置结束的子序列的最大和了。
 
 
剩下的就是要判断起始和终点位置了。
 
在循环的过程中,每循环一次就算出一个以当前位置结束的最大子序列和。每次循环中最大的那个保存下来,不就是最终所有最大子序列和中的最大值了么。
 
其中temp保存的是前一个位置的最大子序列和的开始位置(题目中是从1开始的哦);当 sum > maxsum 时(程序中的条件,与说明时的maxsum不太一样哦)就记录最大值,并保持它的开始位置为temp,终止位置即为当前位置(i +1是因为题目中第一个为1,而不是0);
 
当最大子序列和小于0时,将 temp = i + 2; 其中 i + 1 表示当前位置(理由如上),i + 2就表示当前位置的下一个位置了。既此最大子序列和为负值,那么下一个的最大子序列和应该是它本身,而不再累加前边的。
 
程序中就两个if 语句,想要说明白还真不容易。
 
还有,有人会问,当整个序列全是负数时,还对吗?负数也是成立的,如果全是负数的时候,它就是每次都只取当前值作为最大值了,因为负的跟负的不就越加越小了吗。
 
因为题目中给出的范围是-1000 ~1000,所以这里初始的maxsum 初始化为-1001 ,只有比所有可能的值都小时才行。maxsum初始化为0;那么当序列全是负数时,得出的最大值将是0……这就wrong了
 
 总之,只要上一个子序列最大和为正,那么无论当前值的正负,都会与当前的相加,这样以当前值结尾的子序列最大和就会增大。(一个正数 加一个 正数2 或者负数 那么都会比这个正数2 或负数原来要增大,同理,一个负数加任何一个数,都会使这个数减小,因此当前一子序列最大和小于零时,我们就归零它了,相当于是不加任何数,而保留当前位置值本身)
 

内存优化版:
理解了以上思想后,观察上一个代码我们发现,那个a[10000]基本上就没用啊,保存了一些输入数据,可是那些数据只用了一次就没用了。输入数据的for循环和处理数据的for循环是一模一样的,而且处理数据也只是用到当前输入的数据。
于是,数组也可以省去了,直接将两个循环合并。输入一个数据,直接累加……省下不少空间哦。
     #include <iostream>
using namespace std;
int main()
{
int j,i,k,n,m,t;
int a; //不需要数组,只需要一个输入变量
scanf("%d",&t);
for (j=;j<=t;j++)
{
scanf("%d",&n);
int sum=,maxsum=-,first =, last = , temp = ;
for (i=;i<n;i++)
{
scanf("%d",&a);
sum += a;
if (sum > maxsum)
{
maxsum = sum;first = temp;last = i+;
}
if (sum < )
{
sum = ;temp = i+;
}
}
//注意格式,我就因为将冒号写到了数的前边而wrong answer,郁闷半天才发现……
printf("Case %d:\n%d %d %d\n",j,maxsum,first,last);
if (j!=t)
{
printf("\n");
}
} return ;
}
 

HDU 1003 Max Sum【动态规划求最大子序列和详解 】的更多相关文章

  1. HDU 1003 Max Sum * 最长递增子序列(求序列累加最大值)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. HDU 1003 Max Sum (动态规划 最大区间和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  3. hdu 1003 Max Sum(动态规划)

    解题思路: 本题在给定的集合中找到最大的子集合[子集合:集合的元素的总和,是所有子集合中的最大解.] 结果输出: 最大的子集合的所有元素的和,子集合在集合中的范围区间. 依次对元素相加,存到一个 su ...

  4. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  5. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  6. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  7. hdu 1003 Max Sum (动态规划)

    转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html Max Sum Time Limit: 2000/1000 MS (Java/O ...

  8. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum 求区间最大值 (尺取法)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

随机推荐

  1. CentOS 7部署ASP.NET Core应用程序

    看了几篇大牛写的关于Linux部署ASP.NET Core程序的文章,今天来实战演练一下.2017年最后一个工作日,提前预祝大家伙元旦快乐.不扯淡,直接进入正题.您有任何问题请在评论区留言. 1.环境 ...

  2. JNI的使用总结初篇

    前言:以下内容是个人在写JNI Demo前后进行查找理解总结得出的一些结论,如有错误的地方希望路过的朋友能够指正. 一.JNI是Java native interface的简称,目前就我所知这类方法的 ...

  3. Who's in the Middle

    FJ is surveying his herd to find the most average cow. He wants to know how much milk this 'median' ...

  4. 初学者福音——10个最佳APP开发入门在线学习网站

    根据Payscale的调查显示,现在的APP开发人员的年薪达到:$66,851.这也是为什么那么多初学的开发都想跻身到APP开发这行业的主要原因之一.每当你打开App Store时候,看着琳琅满目的A ...

  5. 记录一个从没见过的bug

    js的默认启动 $(function(){ )}; 不识别,意思是如果你把js内容放入这个东西里面,它不会执行.必须把它去掉才可以. 包括.tag里的文件也是一样. 这是发生在系统框架迁移发生的事,以 ...

  6. MHA高可用架构与Atlas读写分离

    1.1 MHA简介 1.1.1 MHA软件介绍 MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton ...

  7. 记一次Hbase查询速度优化经历

    项目背景: 在这次影像系统中,我们利用大数据平台做的是文件(图片.视频等)批次的增删改查,每个批次都包含多个文件,上传完成以后要添加文件索引(文件信息及批次信息),由于在Hbase存储的过程中,每个文 ...

  8. [js高手之路] html5 canvas教程 - 制作一个数码倒计时效果

    效果图: 这个实例主要注意: 1,剩余时间的计算 2,每个时间数字的绘制 时间主要有0-9和一个冒号组成,用数组来表示( 0: 就是不画圆,1:就是画一个蓝色的圆 ) num.js文件: var di ...

  9. Micropython教程之TPYBoardv102 DIY蓝牙智能小车实例

    1.实验目的 1.学习在PC机系统中扩展简单I/O接口的方法. 2.进一步学习编制数据输出程序的设计方法. 3.学习蓝牙模块的接线方法及其工作原理. 4.学习L298N电机驱动板模块的接线方法. 5. ...

  10. CommonJS, AMD ,CMD之间的关系

    commonjs是用在服务器端的,同步的,如nodejs amd, cmd是用在浏览器端的,异步的,如requirejs和seajs 其中,amd先提出,cmd是根据commonjs和amd基础上提出 ...