[leetcode-592-Fraction Addition and Subtraction]
Given a string representing an expression of fraction addition and subtraction,
you need to return the calculation result in string format. The final result should be irreducible fraction.
If your final result is an integer, say 2, you need to change it to the format of fraction that has denominator 1.
So in this case, 2 should be converted to 2/1.
Example 1:
Input:"-1/2+1/2"
Output: "0/1"
Example 2:
Input:"-1/2+1/2+1/3"
Output: "1/3"
Example 3:
Input:"1/3-1/2"
Output: "-1/6"
Example 4:
Input:"5/3+1/3"
Output: "2/1"
Note:
The input string only contains '0' to '9', '/', '+' and '-'. So does the output.
Each fraction (input and output) has format ±numerator/denominator. If the first input fraction or the output is positive, then '+' will be omitted.
The input only contains valid irreducible fractions, where the numerator and denominator of each fraction will always be in the range [1,10]. If the denominator is 1, it means this fraction is actually an integer in a fraction format defined above.
The number of given fractions will be in the range [1,10].
The numerator and denominator of the final result are guaranteed to be valid and in the range of 32-bit int.
思路:
如下是参考一 大神给出的代码,先贴这儿,慢慢学习:
string fractionAddition(string s)
{
long p = , q = , p1, q1, t;
for (size_t i = , j; i < s.size(); i = j) {
j = s.find_first_of("+-", i+);
if (j == string::npos) j = s.size();
auto k = s.find('/', i);
long x = stol(s.substr(i, k-i)), y = stol(s.substr(k+, j));
p1 = p*y+q*x;
q1 = q*y;
t = __gcd(p1, q1);
p = p1/t;
q = q1/t;
if (q < ) p *= -, q *= -;
}
return to_string(p)+"/"+to_string(q);
}
如下是leetcode上的solution。
The initial fraction is 0/1 (n/d). We just need to read next fraction (nn/dd), normalize denominators between n/d and nn/dd (using GCD), and add/subtract the numerator (n +/- nn). In the end, we also need to use GCD to make the resulting fraction irreducible.
int GCD(int a, int b ){ return (b == ) ? a : GCD(b, a % b); }
string fractionAddition(string s) {
int n = , d = , p = , p1 = , p2 = ;
if (s[] != '-') s = "+" + s;
while (p < s.size()) {
for (p1 = p + ; s[p1] != '/'; ++p1);
for (p2 = p1 + ; p2 < s.size() && s[p2] != '+' && s[p2] != '-'; ++p2);
auto nn = stoi(s.substr(p + , p1 - p - )), dd = stoi(s.substr(p1 + , p2 - p1 - ));
auto gcd = GCD(d, dd);
n = n * dd / gcd + (s[p] == '-' ? - : ) * nn * d / gcd;
d *= dd / gcd;
p = p2;
}
auto gcd = GCD(abs(n), d);
return to_string(n / gcd) + "/" + to_string(d / gcd);
}
参考:
https://discuss.leetcode.com/topic/90024/c-12-lines-gcd
[leetcode-592-Fraction Addition and Subtraction]的更多相关文章
- [LeetCode] 592. Fraction Addition and Subtraction 分数加减法
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- 【LeetCode】592. Fraction Addition and Subtraction 解题报告(Python)
[LeetCode]592. Fraction Addition and Subtraction 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuem ...
- 592. Fraction Addition and Subtraction
Problem statement: Given a string representing an expression of fraction addition and subtraction, y ...
- LC 592. Fraction Addition and Subtraction
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- 【leetcode】592. Fraction Addition and Subtraction
题目如下: 解题思路:本题考察的是分数的加减法.小学时候就学过,分数的加减法是先求两个分母的最小公倍数,然后分子分别乘以最小公倍数与自己分母的商,相加后约分即可.所以,本题只要按+,-两个符号分割输入 ...
- [LeetCode] Fraction Addition and Subtraction 分数加减法
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- [Swift]LeetCode592. 分数加减运算 | Fraction Addition and Subtraction
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- [LeetCode] 598. Range Addition II 范围相加之二
Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...
- [LeetCode] 370. Range Addition 范围相加
Assume you have an array of length n initialized with all 0's and are given k update operations. Eac ...
随机推荐
- 使用Browserify来实现CommonJS的浏览器加载
前面的话 Nodejs的模块是基于CommonJS规范实现的,可不可以应用在浏览器环境中呢? var math = require('math'); math.add(2, 3); 第二行math.a ...
- Servlet,过滤器,监听器,拦截器的区别
1.过滤器 Servlet中的过滤器Filter是实现了javax.servlet.Filter接口的服务器端程序,主要的用途是过滤字符编码.做一些业务逻辑判断等.其工作原理是,只要你在web.xml ...
- JAVA printWriter中write()和println()区别
PrintWriter 的Write()方法和println()方法有何细微的区别? 最近学习JAVA网络编程,在服务器端和客户端产生一个Socket 后, 两边各自用getIputStream()和 ...
- js算法集合(二) javascript实现斐波那契数列 (兔子数列)
js算法集合(二) 斐波那契数列 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列进行研究,来加深对循环的理解. Javascript实 ...
- 从.Net版本演变看String和StringBuild性能之争
在C#中string关键字的映射实际上指向.NET基类System.String.System.String是一个功能非常强大且用途非常广泛的基类,所以我们在用C#string的时候实际就是在用.NE ...
- jsp/html页面中的路径
Html/Jsp页面中的路径,是供浏览器使用的."/"代表的是服务器根目录,一个服务器会有多个web应用,所以请求资源时需要加应用名才能正确访问. 页面中使用的相对路径,也是由浏览 ...
- 【JAVAWEB学习笔记】28_jqueryAjax:json数据结构、jquery的ajax操作和表单校验插件
Ajax-jqueryAjax 今天内容: 1.json数据结构(重点) 2.jquery的ajax操作(重点) 3.jquery的插件使用 一.json数据结构 1.什么是json JSON(J ...
- Java经典编程题50道之一
有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? public class Example01 { publi ...
- 在linux中导入sql文件的方法分享(使用命令行转移mysql数据库)
因导出sql文件 在你原来的网站服务商处利用phpmyadmin导出数据库为sql文件,这个步骤大家都会,不赘述. 上传sql文件 前面说过了,我们没有在云主机上安装ftp,怎么上传呢? 打开ftp客 ...
- 学习web前端怎样入门?初学者赶紧看过来!
web前端怎么样才能入门,首先我们要从什么是初级web前端工程师说起: 按照我的想法,我把前端工程师分为了入门.初级.中级.高级这四个级别, 入门级别指的是了解什么是前端(前端到底是什么其实很多人还是 ...