1001: 节 能

时间限制: 1 Sec  内存限制: 128 MB

提交: 21  解决: 9

[提交][状态][讨论版]

题目描述

Dr.Kong设计的机器人卡多越来越聪明。最近市政公司交给卡多一项任务,每天早晨5:00开始,它负责关掉ZK大道右侧上所有的路灯。

卡多每到早晨5:00准会在ZK大道上某盏路灯的旁边,然后他开始关灯。每盏灯都有一定的功率,机器人卡多有着自觉的节能意识,它希望在关灯期间,ZK大道右侧上所有路灯的耗电量总数是最少的。

机器人卡多以1m/s的速度行走。假设关灯动作不需要花费额外的时间,因为当它通过某盏路灯时就顺手将灯关掉。

请你编写程序,计算在给定路灯设置,灯泡功率以及机器人卡多的起始位置的情况下,卡多关灯期间,ZK大道上所有灯耗费的最小能量。

输入

第一行:  N       表示ZK大道右侧路灯的数量         (2≤ N ≤ 1000)

第二行:  V       表示机器人卡多开始关灯的路灯号码。   (1≤V≤N)

接下来的N行中,每行包含两个用空格隔开的整数D和W,用来描述每盏灯的参数

D表示该路灯与ZK大道起点的距离  (用米为单位来表示),

W表示灯泡的功率,即每秒该灯泡所消耗的能量数。路灯是按顺序给定的。

( 0≤D≤1000, 0≤W≤1000 )

输出

输出一个整数,即消耗能量之和的最小值。注意结果小于200,000,000

样例输入

4 32 25 86 18 7

样例输出

56

思路:做的时候没有思路,知道是DP,但是推不出来。

这道题目用区间DP的做法。设置dp[i][j][0]为关掉从i到j的所有灯,并最终处于i所在的位置时消耗的最少能量;dp[i][j][1]就表示为关掉从i到j的所有灯,并最后处于j的位置时消耗的最少能量。对于一个状态转移,从相邻的位置中得到信息,同时要考虑转移时其他电灯增加的功率损耗。诸事中写的很详细了。

代码:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn=1005;
struct node {
int pos,val;//pos亮灯的位置,val此位置电灯单位时间内消耗的功率
node() {pos=val=0;}
}ans[maxn];
int dp[maxn][maxn][2];
int fw[maxn][maxn];
int main() {
int n,index,totalw=0;
scanf("%d",&n);scanf("%d",&index);
for(int i=1;i<=n;i++) {
scanf("%d%d",&ans[i].pos,&ans[i].val);totalw+=ans[i].val;//totalw表示初始状态电灯功率总耗损
}
memset(fw,0,sizeof(fw));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j++) {
fw[i][j]=fw[i][j-1]+ans[j].val;//该数组表示从i位置到j位置初始状态下的功率总耗
}
}
//初始化进行分段考虑,从给定位置v向两边扩散
//v的左边
for(int i=index-1;i>=1;--i) {
//先考虑停留到左边,然后考虑回到右边
dp[i][index][0]=dp[i+1][index][0]+(totalw-fw[i+1][index])*(ans[i+1].pos-ans[i].pos);
dp[i][index][1]=dp[i][index][0]+(totalw-fw[i][index])*(ans[index].pos-ans[i].pos);
}
//v的左边
for(int j=index+1;j<=n;++j) {
//先考虑停留到右边,然后考虑回到左边
dp[index][j][1]=dp[index][j-1][1]+(totalw-fw[index][j-1])*(ans[j].pos-ans[j-1].pos);
dp[index][j][0]=dp[index][j][1]+(totalw-fw[index][j])*(ans[j].pos-ans[index].pos);
}
for(int i=index-1;i>=1;--i) {
for(int j=index+1;j<=n;++j) {
//对于dp[i][j][0]只能考虑dp[i+1][j][0|1]的状态,dp[i][j-1][0|1]没有意义。
dp[i][j][0]=min((dp[i+1][j][0]+(totalw-fw[i+1][j])*(ans[i+1].pos-ans[i].pos)),
(dp[i+1][j][1]+(totalw-fw[i+1][j])*(ans[j].pos-ans[i].pos)));
//道理同上
dp[i][j][1]=min((dp[i][j-1][1]+(totalw-fw[i][j-1])*(ans[j].pos-ans[j-1].pos)),
(dp[i][j-1][0]+(totalw-fw[i][j-1])*(ans[j].pos-ans[i].pos)));
}
}
//要么在左边,要么在右边,挑最小的即可
int result=min(dp[1][n][0],dp[1][n][1]);
printf("%d\n",result);
return 0;
}

第四届河南省ACM 节能 区间DP的更多相关文章

  1. 第四届河南省ACM SUBSTRING 字符串处理

    SUBSTRING 时间限制: 1 Sec  内存限制: 128 MB 提交: 17  解决: 5 [提交][状态][讨论版] 题目描述 You are given a string input. Y ...

  2. 第四届河南省ACM 序号互换 进制转换

    序号互换 时间限制: 1 Sec  内存限制: 128 MB 提交: 41  解决: 19 [提交][状态][讨论版] 题目描述 Dr.Kong设计了一个聪明的机器人卡多,卡多会对电子表格中的单元格坐 ...

  3. 第四届河南省ACM 表达式求值 栈

    表达式求值 时间限制: 1 Sec  内存限制: 128 MB 提交: 14  解决: 7 [提交][状态][讨论版] 题目描述 Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简 ...

  4. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  5. ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)

    Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. 2016 年沈阳网络赛---QSC and Master(区间DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5900 Problem Description Every school has some legend ...

  8. HDU 4283---You Are the One(区间DP)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=4283 Problem Description The TV shows such as Y ...

  9. HDU 4293---Groups(区间DP)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=4293 Problem Description After the regional con ...

随机推荐

  1. 开发手机APP的神器 --- ionic

      前  言          在如今的生活中,手机已经与我们的生活紧紧的联系在了一起.而手机APP更是其中,重要的一环.今天,影子就为大家介绍一种开发手机APP的超级神器---ionic. ioni ...

  2. xmanager 打开centos7图形化窗口

    centos7 最小化安装后,个别时候需要执行一些带图形界面的命令.比如安装oracle,打开xclock等. 前置条件:centos7系统 ,xmanager 已安装 用xclock做测试 1.因为 ...

  3. 学习一门新语言需要了解的基础-12 if和switch对比

    本节内容 是否存在性能差异 使用场景 反汇编对比[付费阅读] 之前初步接触了汇编,然后利用汇编简单了解下函数调用的过程,包括怎么样保护堆栈帧现场和恢复现场.另外做了简单的函数调用参数复制,返回值的传递 ...

  4. Hibternate框架笔记

    Hibernate框架 配置 配置文件: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE h ...

  5. EF6中使用事务的方法

    默认情况当你执行SaveChanges()的时候(insert update delete)来操作数据库时,Entity Framework会把这个操作包装在一个事务里,当操作结束后,事务也结束了. ...

  6. Android插件化-RePlugin项目集成与使用

    前言:前一段时间新开源了一种全面插件化的方案-- RePlugin,之前一种都在关注 DroidPlugin 并且很早也在项目中试用了,但最终没有投入到真正的生产环节,一方面是项目中没有特别需要插件化 ...

  7. (转)linux下如何批量杀JAVA进程或某个进程方法

    在工作中经常需要停止JAVA进程,停止时间也比较长,那么有时候因为一些情况,需要把 linux 下JAVA所有进程 kill 掉,又不能用killall 直接杀掉某一进程名称包含的所有运行中进程(我们 ...

  8. eclipse禁用svg文件Validation

    1.打开window>preferences>validation找到xml validator 2.点击xml validator最右侧的按钮打开xml校验规则窗口,选中exclude ...

  9. 一款超好用轻量级JS框架——Zepto.js(下)

       前   言 絮叨絮叨 前面和大家分享了Zepto的原型方法,相信大家也对这个框架有了一定的了解,那么今天再和大家分享一下它的对象方法吧! 1add() 支持一到二个参数,第一个为选择器,与$() ...

  10. Python 列表浅拷贝与深拷贝

    浅拷贝 shallow copy 和深拷贝 deep copy list.copy() 浅拷贝:复制此列表(只复制一层,不会复制深层对象) 等同于 L[:] 举例: 浅拷贝: a = [1.1, 2. ...