import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Random;
public class LargeMappedFiles {
/**
* 大数据排序合并
*
* @param args
*/
public static void main(String[] args) throws IOException {
// 写入文件的路径
String filePath = "D:\\456";
// 切分文件的路径
String sqlitFilePath = "D:\\456\\123";
//数据的个数
int CountNumbers=10000000;
//子文件的个数
int CountFile=10;
//精度
int countAccuracy=30*CountFile;
long startNumber=System.currentTimeMillis();
// 写入大数据文件
WriteData(filePath,CountNumbers);
System.out.println("存储完毕");
// 将大数据文件切分到另外的十个小文件中
sqlitFileDate(filePath, sqlitFilePath,CountFile);
System.out.println("文件切割完毕!");
// 把每个文件的数据进行排序
singleFileDataSort(sqlitFilePath,CountFile);
System.out.println("每个子文件排序完毕!");
//精度调整,十个文件数据进行比较整合
deathDataFile(filePath,sqlitFilePath,countAccuracy,CountFile);
System.out.println("整合完毕");
long stopNumber=System.currentTimeMillis();
System.out.println("耗时"+(stopNumber-startNumber)/1000+"毫秒");
}
// 写入大数据文件
public static void WriteData(String path,int CountNumbers) throws IOException {
path = path + "\\12114.txt";
FileWriter fs = new FileWriter(path);
BufferedWriter fw=new BufferedWriter(fs);
for (int i = 0; i < CountNumbers; i++) {
fw.write(new Random().nextInt(Integer.MAX_VALUE) + "\r\n");
}
fw.close();
fs.close();
}
// 将大数据文件切分到另外的十个小文件中
public static void sqlitFileDate(String filepath, String sqlitPath,
int CountFile) throws IOException {
FileWriter fs = null;
BufferedWriter fw=null;
FileReader fr = new FileReader(filepath + "\\12114.txt");
BufferedReader br = new BufferedReader(fr); // 读取获取整行数据
int i = 1;
LinkedList WriterLists=new LinkedList(); //初始化文件流对象集合
LinkedList fwLists=new LinkedList();
for (int j = 1; j <= CountFile; j++) {
//声明对象
fs = new FileWriter(sqlitPath + "\\12" + j + ".txt",false);
fw=new BufferedWriter(fs);
//将对象装入集合
WriterLists.add(fs);
fwLists.add(fw);
}
//判断是文件流中是否还有数据返回
while (br.ready()) {
int count=1;//初始化第一文件流
for (Iterator iterator = fwLists.iterator(); iterator.hasNext();) {
BufferedWriter type = (BufferedWriter) iterator.next();
if(i==count)//判断轮到第几个文件流写入数据了
{
//写入数据,跳出,进行下一个文件流,下一个数据的写入
type.write(br.readLine() + "\r\n");
break;
}
count++;
}
//判断是否到了最后一个文件流了
if (i >= CountFile) {
i = 1;
} else
i++;
}
br.close();
fr.close();
for (Iterator iterator = fwLists.iterator(); iterator.hasNext();) {
BufferedWriter object = (BufferedWriter) iterator.next();
object.close();
}
//遍历关闭所有子文件流
for (Iterator iterator = WriterLists.iterator(); iterator.hasNext();) {
FileWriter object = (FileWriter) iterator.next();
object.close();
}
}
// 把每个文件的数据进行排序
public static void singleFileDataSort(String path1,int CountFile) throws IOException {
LinkedList nums = null;
for (int i = 1; i <= CountFile; i++) {
nums = new LinkedList();
String path = path1 + "\\12" + i + ".txt";
try {
FileReader fr = new FileReader(path);
BufferedReader br = new BufferedReader(fr);
while (br.ready()) {
// 将读取的单个数据加入到集合里面
nums.add(Integer.parseInt(br.readLine()));
}
// 对集合进行排序
Collections.sort(nums);
// 将排序好的数据写入源文件
numberSort(nums, path);
br.close();
fr.close();
} catch (NumberFormatException e) {
e.printStackTrace();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
// 对每个文件数据进行排序,再写入源文件
public static void numberSort(LinkedList list, String path) {
try {
FileWriter fs = new FileWriter(path);
BufferedWriter fw=new BufferedWriter(fs);
for (Iterator iterator = list.iterator(); iterator.hasNext();) {
Object object = (Object) iterator.next();
fw.write(object + "\r\n");
}
fw.close();
fs.close();
} catch (IOException e) {
e.printStackTrace();
}
}
// 文件数据最终整合(精度调整)
public static void deathDataFile(String filepath, String sqlitFilePath1,
int countAccuracy, int CountFile) throws IOException {
LinkedList nums = new LinkedList(); //添加数据,进行排序
Object temp = null; // 记录每次排序剩下的最后一个数字
boolean ispass = false;
LinkedList ispasses = null; //记录数据文件的状态信息
FileWriter fs = new FileWriter(filepath + "\\Sort.txt", false); //创建文件流,以便整合的数据写入
BufferedWriter bw=new BufferedWriter(fs);
FileReader fr = null; //声明读取文件流
BufferedReader br = null; //声明BufferedReader
LinkedList WriterLists = new LinkedList(); // 初始化文件流对象集合
LinkedList WriterListFile = new LinkedList();
for (int j = 1; j <= CountFile; j++) {
// 声明对象,开启所有子文件流访问所有子文件的数据
fr = new FileReader(sqlitFilePath1 + "\\12" + j + ".txt");
//开启所有BufferedReader,方便下次的整行的读取
br = new BufferedReader(fr);
// 将所有 FileReader对象装入集合
WriterListFile.add(fr);
// 将所有 BufferedReader对象装入集合
WriterLists.add(br);
}
for (;;) {
// 将十个源文件的是否有数据情况存入集合,以方便后面做判断
ispasses = new LinkedList();
// 分别读取十个源文件的单个数据
for (Iterator iterator = WriterLists.iterator(); iterator.hasNext();) {
BufferedReader object = (BufferedReader) iterator.next();
Object obj = null;
while (object.ready()) {
//添加所有文件流的每次的数据
nums.add(Integer.parseInt(object.readLine().toString()));
break;
}
if (object.ready() == false)
ispasses.add("true"); //将各文件中的数据状态存入集合中
}
// 决断是否是第一次进来
if (nums.size() % countAccuracy == 0 && ispass == false) {
// 对集合进行排序
Collections.sort(nums);
// 接收最大的数据,其它的数据写入总排序文件
temp = numberSortData(nums, filepath, false, countAccuracy, bw);
//重新初始化集合
nums = new LinkedList();
// 添加上一组比较剩下的数据
nums.add(temp);
ispass = true;
// 记录源文件的数据数量,以便下次的遍历
continue;
}
if (ispass) {
if (nums.size() % countAccuracy == 1 && nums.size() > 1) {
// 对集合进行排序
Collections.sort(nums);
// 接收最大的数据,其它的数据写入总排序文件
temp = numberSortData(nums, filepath, true, countAccuracy,
bw);
nums = new LinkedList();
nums.add(temp);
continue;
}
}
// 记录下一组数据的位置
// 判断是不是十个文件都没有数据
if (ispasses.size() == CountFile) {
Collections.sort(nums);
temp = numberSortData(nums, filepath, true, countAccuracy, bw);
nums = new LinkedList();
break;
}
}
bw.close();
//关闭写入流
fs.close();
//关闭所有的BufferedReader
for (Iterator iterator = WriterLists.iterator(); iterator.hasNext();) {
BufferedReader object2 = (BufferedReader) iterator.next();
object2.close();
}
//关闭所有的FileReader
for (Iterator iterator = WriterListFile.iterator(); iterator.hasNext();) {
FileReader object = (FileReader) iterator.next();
object.close();
}
}
// 对数据进行排序,写入最终文件中(精度调整)
public static Object numberSortData(LinkedList list, String filePath,
boolean ispass, int countAccuracy,BufferedWriter fs) {
Object temp = 0; //记录最后一个值
int tempCount = 0; //记录写入的数据位置
try {
for (Iterator iterator = list.iterator(); iterator.hasNext();) {
Object object = (Object) iterator.next();
// 判断是否是最后一个数
if (tempCount == list.size() - 1) {
// 判断集合里面不足一百個數了
if (list.size() < countAccuracy + 1 && ispass) {
temp = null;
} else {
temp = object;
break;
} www.2cto.com
}
// 写入数据源
fs.write(object + "\r\n");
// 记录数据的下标
tempCount++;
}
} catch (IOException e) {
e.printStackTrace();
}
return temp;
}
}
- python学习——大文件分割与合并
在平常的生活中,我们会遇到下面这样的情况: 你下载了一个比较大型的游戏(假设有10G),现在想跟你的同学一起玩,你需要把这个游戏拷贝给他. 然后现在有一个问题是文件太大(我们不考虑你有移动硬盘什么的情 ...
- python实现大文件分割与合并
小U盘传大电影时可以免去用winrar分割文件时的压缩和解压缩过程. file.py import sys from os.path import exists fileCount = 0 def s ...
- Php处理大文件-分割和合并
分割文件 /* * 分割文件 * 默认大小 2M=10485760/5 */ function file_split($file,$block_size=10485760/5) { $block_in ...
- java:快速文件分割及合并
文件分割与合并是一个常见需求,比如:上传大文件时,可以先分割成小块,传到服务器后,再进行合并.很多高大上的分布式文件系统(比如:google的GFS.taobao的TFS)里,也是按block为单位, ...
- (转)java:快速文件分割及合并
文件分割与合并是一个常见需求,比如:上传大文件时,可以先分割成小块,传到服务器后,再进行合并.很多高大上的分布式文件系统(比如:google的GFS.taobao的TFS)里,也是按block为单位, ...
- JAVA IO分析三:IO总结&文件分割与合并实例
时间飞逝,马上就要到2018年了,今天我们将要学习的是IO流学习的最后一节,即总结回顾前面所学,并学习一个案例用于前面所学的实际操作,下面我们就开始本节的学习: 一.原理与概念 一.概念流:流动 .流 ...
- Linux中split大文件分割和cat合并文件
当需要将较大的数据上传到服务器,或从服务器下载较大的日志文件时,往往会因为网络或其它原因而导致传输中断而不得不重新传输.这种情况下,可以先将大文件分割成小文件后分批传输,传完后再合并文件. 1.分割 ...
- android下大文件分割上传
由于android自身的原因,对大文件(如影视频文件)的操作很容易造成OOM,即:Dalvik堆内存溢出,利用文件分割将大文件分割为小文件可以解决问题. 文件分割后分多次请求服务. //文件分割上传 ...
- c语言文件分割与合并
一.综述 c语言操作文件通过文件指针FILE*,每个要操作的文件必须打开然后才能读写. 注意事项: @1分割与合并文件最好使用二进制模式即"rb"或"wb",这 ...
随机推荐
- Android中查看布局文件中的控件(view,id)在哪里被调用(使用)
在阅读别人的代码时通常是很痛苦的,有时很想要看一看布局中的控件在哪里被调用了,为之很苦恼 在这里提供一种方法. 复制要查看的控件ID,到R文件中搜索到该ID, 接下来就好办的了,选中ID按下C ...
- MySQL1236错误的恢复
从库出现问题 mysql> show slave status\G; *************************** . row *************************** ...
- Tcl与Design Compiler (六)——基本的时序路径约束
本文属于原创手打(有参考文献),如果有错,欢迎留言更正:此外,转载请标明出处 http://www.cnblogs.com/IClearner/ ,作者:IC_learner 时序约束可以很复杂,这 ...
- C++实现四叉树
什么是四叉树? 四叉树可以有效解决这个问题. 四叉树每一层都把地图划分四块,根据地图尺寸来决定树的层数,层数越大划分越细. 但需要对某一范围的单位筛选时,只需要定位到与范围相交的树区域,再对其区域内的 ...
- icheck样式绑定与翻页保持
官方文档:http://icheck.fronteed.com/ 使用基本样式 $('input').iCheck({ checkboxClass : 'icheckbox_square-blue', ...
- B/S(Web)实时通讯解决方案
B/S的实时通讯实现起来比较麻烦,因为http协议是无状态的,导致一些实时消息通知和聊天等功能比较难以实现,本文主要简述几种自己之前常用的几种方式. 1.传统的HTTP协议是无状态的 传统的HTTP协 ...
- Windbg DUMP分析(原创汇总)
1. 引入篇 所谓技术分享,其实是一个自我总结和相互学习.不断成长的过程. 考虑到之前原创的文章http://www.cnblogs.com/LoveOfPrince/p/6032523.html&l ...
- MongoDB基础教程系列--第三篇 MongoDB基本操作(二)
1.集合操作 1.1.创建集合 MongoDB 用 db.createCollection(name, options) 方法创建集合. 格式 db.createCollection(name, op ...
- js原生的轮播图
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <t ...
- 老李推荐:第6章2节《MonkeyRunner源码剖析》Monkey原理分析-事件源-事件源概览-获取命令字串
老李推荐:第6章2节<MonkeyRunner源码剖析>Monkey原理分析-事件源-事件源概览-获取命令字串 从上一节的描述可以知道,MonkeyRunner发送给Monkey的命令 ...