python-广度优先搜索
广度优先搜索
下面我们来来BFS算法策略:

比如:我们要从双子峰---->金门大桥,最短路径如何?
我们利用广度优先搜索来一步步求解,注意广度优先搜索在于的关键在于“广”,也就是说以双子峰为起点,我们要尽可能的多比较与之相邻的周边路径,从其中选取一条最优路径。
第一步:

我们沿着两个箭头方向路径探索到a点和b点后,发现并没有到达想要去的地方,于是我继续往下探索。

同样,我们发现还没有到达目的地,继续往下探索。

到达这一步后,我们发现其中有一条路径已经到达金门大桥,而其他两条路径仅仅到达c点。因此,我们寻找到的最短路径为:双子峰->a->c->金门大桥。
所以,由上我们可以知道,广度优先搜索其实就是用来探索最短路径的一种方式。
根据上面实例,我们想要寻找一条到某地的最短路径,需要一下两个步骤:
(1)使用图来建立问题模型。
(2)使用广度优先搜索解决问题。
利用广度优先搜索,我们可以回答两个问题:
1.从节点A出发,有前往B节点的路径吗?
2.从节点A出发,前往B节点哪条路径最短?
首先,我们来看看如何构建一张图。
这里我们要使用一种能够表示映射关系的数据结构---散列表。至于什么是散列表,这里就不再赘述。
例如:

graph = {}
grapu['you'] = ['alice','bob','mar','rain','cat']
这里的“you”被映射到一个数组。在'you'的这个数组里面,包含所有与你相邻的元素。
有了以上方式,我们就可以构建一张更大图。
算法实现策略:

首先,创建一个双端队列,将需要查找的压入队列中。
from collections import deque
def person_is_seller(name):
return name[-1] == 'm' #如果这个名字是以M结尾,则是
graph = {}
grapu['you'] = ['alice','bob','mar','rain','cat']
search_queue = deque() #创建一个队列
search_queue += graph['you'] #将you压入队列
while search_queue: #只要队列不为空
person = search_queue.popleft() #取出左边第一个人
if person_is_seller(person): #检查这个人是否为芒果商
print person += ' is a mango seller! '
return True
else:
search_queue += graph[person] #将这个人的朋友加入队列
return False #没有芒果商
但是,上面算法有一个明显的问题,如果你的朋友alice和bob都有这一个好友,那么在查找的过程中就会陷入循环状态。要解决这个问题,我们可以设置一个列表,来标记那些已经被查找过的人。因此,最终代码如下:
def search(name):
search_queue = deque() #创建一个队列
search_queue += graph[name] #将需要查找的压入队列
searcher = [] # 用于记录已经查找过的
while search_queue: #只要队列不为空
person = search_queue.popleft() #取出左边第一个人
if not person in searched: #当这个人不在searched中才继续往下查找
if person_is_seller(person): #检查这个人是否为芒果商
print person += ' is a mango seller! '
return True
else:
search_queue += graph[person] #将这个人的朋友加入队列
searched.append(person)
return False #没有芒果商
性能分析:
首先沿着每条边进行查找,如果边数为n,查找效率为O(V)
再次,我们在每次查找过程中需要对已经搜索的列表进行二次判断,判断所需时间为P(n)
因此,广度优先搜索总的查找效率为O(V+n)
python-广度优先搜索的更多相关文章
- python 实现图的深度优先和广度优先搜索
在介绍 python 实现图的深度优先和广度优先搜索前,我们先来了解下什么是"图". 1 一些定义 顶点 顶点(也称为"节点")是图的基本部分.它可以有一个名称 ...
- python实现广度优先搜索和深度优先搜索
图的概念 图表示的是多点之间的连接关系,由节点和边组成.类型分为有向图,无向图,加权图等,任何问题只要能抽象为图,那么就可以应用相应的图算法. 用字典来表示图 这里我们以有向图举例,有向图的邻居节点是 ...
- 常用算法2 - 广度优先搜索 & 深度优先搜索 (python实现)
1. 图 定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合. 简单点的说:图由节点和边组成.一 ...
- 【数据结构与算法Python版学习笔记】图——词梯问题 广度优先搜索 BFS
词梯Word Ladder问题 要求是相邻两个单词之间差异只能是1个字母,如FOOL变SAGE: FOOL >> POOL >> POLL >> POLE > ...
- 用Python实现广度优先搜索
图是一种善于处理关系型数据的数据结构,使用它可以很轻松地表示数据之间是如何关联的 图的实现形式有很多,最简单的方法之一就是用散列表 背景 图有两种经典的遍历方式:广度优先搜索和深度优先搜索.两者是相似 ...
- 广度优先搜索(BFS)解题总结
定义 广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法. 简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点. 如果所有节点均被访问,则算法中止. B ...
- 图的广度优先搜索(BFS)
把以前写过的图的广度优先搜索分享给大家(C语言版) #include<stdio.h> #include<stdlib.h> #define MAX_VERTEX_NUM 20 ...
- 广度优先搜索(BFS)
定义 维基百科:https://en.wikipedia.org/wiki/Breadth-first_search 给定图G=(V,E)和一个可识别的源结点s,广度优先搜索对图G中的边进行系统性的探 ...
- 总结A*,Dijkstra,广度优先搜索,深度优先搜索的复杂度比较
广度优先搜索(BFS) 1.将头结点放入队列Q中 2.while Q!=空 u出队 遍历u的邻接表中的每个节点v 将v插入队列中 当使用无向图的邻接表时,复杂度为O(V^2) 当使用有向图的邻接表时, ...
- ACM题目————图的广度优先搜索
题目描述 图的广度优先搜索类似于树的按层次遍历,即从某个结点开始,先访问该结点,然后访问该结点的所有邻接点,再依次访问各邻接 点的邻接点.如此进行下去,直到所有的结点都访问为止.在该题中,假定所有的结 ...
随机推荐
- Nginx Access Log日志统计分析常用命令
Nginx Access Log日志统计分析常用命令 IP相关统计 统计IP访问量 awk '{print $1}' access.log | sort -n | uniq | wc -l 查看某一时 ...
- 在eclipse中使用Maven建web工程项目
在eclipse中使用Maven建web工程项目: 第一种方式: 右键新建maven工程,勾选创建一个简单工程 填入信息,注意打包方式要改为war 点击完成,创建完的工程目录如下: 项目中没有WEB- ...
- angular ng-bind
<body ng-app=""> <div ng-controller="firstController"> <input typ ...
- DevExpress ChartControl 设置它的标题
private void SetHZTitle(ref ChartControl chartControl, string HTitle) { chartControl.Titles.Clear(); ...
- Vuex(二)——关于store
一.总览 Vuex 应用的核心就是 store(仓库). "store" 包含着应用中大部分的状态(state). 二.Vuex 和单纯全局对象的不同 Vuex 的状态存储是响应式 ...
- python——模块
一.导入模块 Python之所以应用越来越广泛,在一定程度上也依赖于其为程序员提供了大量的模块以供使用,如果想要使用模块,则需要导入.导入模块有一下几种方法: 1 import module 2 fr ...
- 跨交换机相同vlan内的通信(trunk模式)
当一个公司的小型局域网内部,处于不同楼层的主机处在同一个虚拟局域网内,连接到不同的交换机上,这时候就需要相同虚拟局域网内部的主机进行跨交换机进行通信. 通过设置交换机之间相连接的端口开启trunk模式 ...
- Docker基于已有的镜像制新的镜像
1.根据运行的容器制作镜像 #查看所有的容器 docker ps #暂停当前容器 docker pause COTNAINER-ID #将容器运行当前状态提交 docker commit COTNAI ...
- IO多路复用深入浅出
前言 从零单排高性能问题,这次轮到异步通信了.这个领域入门有点难,需要了解UNIX五种IO模型和 TCP协议,熟练使用三大异步通信框架:Netty.NodeJS.Tornado.目前所有标榜异步的通信 ...
- JAVA中LOCK
原文链接:http://www.cnblogs.com/dolphin0520/p/3923167.html 一.synchronized的缺陷 我们知道如果一个代码块被synchronized修饰了 ...