机器学习中的数学

觉得有用的话,欢迎一起讨论相互学习~Follow Me

原创文章,如需转载请保留出处

本博客为七月在线邹博老师机器学习数学课程学习笔记

索引

  • 微积分,梯度和Jensen不等式
  • Taylor展开及其应用
  • 常见概率分布和推导
  • 指数族分布
  • 共轭分布
  • 统计量
  • 矩估计和最大似然估计
  • 区间估计
  • Jacobi矩阵
  • 矩阵乘法
  • 矩阵分解RQ和SVD
  • 对称矩阵
  • 凸优化

微积分与梯度

  • 常数e的计算过程
  • 常见函数的导数
  • 分部积分法及其应用
  • 梯度
  • 上升/下降最快方向
  • 凸函数
  • Jensen不等式

自然常数e

引入

  • 我们知道对于公式\(y=log_{a}x\),x=1时,y=0.则我们是否能找一点a值,使得y函数在(1,0)点的导数为1呢?

    利用导数公式对\(y=log_{a}x\)求导

定理一:极限存在定理

  • 单调有界函数必有极限
  • 单调数列有上线,必有其极限

构造数列Xn证明其单调有上界

  • 又因为其有(1+1)项,则其必比2要大然而又比3要小,则\(2<X_n<3\)

定理二:两边夹定理

自然常数e的推导

  • \[自然常数e可以看做e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\]

微分与积分

常用函数的导数公式

分部积分法

方向导数与梯度

对于方向导数我们也可以视为\[(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}).(cos\varphi.sin\varphi)^{T}\]方向导数顾名思义既是复合函数在某一方向上的导数,表示函数在某一方向上的变化趋势。当在某一方向上的方向导数最大时,即是梯度 当 \[cos\varphi =\frac{\partial f}{\partial x}\\sin\varphi = \frac{\partial f}{\partial y}\] 时,这是方向导数取最大值,即是梯度

对于梯度我们有

  • 方向导数是各个方向上的导数
  • 偏导数连续才有梯度存在
  • 梯度的方向是方向导数中取到最大值的方向,梯度的值是方向导数的最大值


凸函数与Jsnsen不等式

  • 简而言之,即是函数的割线永远位于函数图像的上方.

一阶可微

  • 简而言之,即是函数如果是一个凸函数,且一阶可微,则过函数任意一点做函数的切线,函数的切线永远在函数的下方.

二阶可微

凸函数举例

Jensen不等式

  • Jensen不等式相当于把凸函数的概念反过来说,即是如果f是一个凸函数,任意取一个在f定义域上的(x,y)点,\(\theta\)属于[0,1].
  • 当只有x,y两个参数,即是使用 基本Jensen不等式 ,然而当推广到k个参数时, 即是表示参数的线性加权的函数值总要小于函数值的线性加权.
  • 可以将其推广到概率密度分布上,假设\(\theta\)表示是事件的概率密度K点分布即所加和为1,则函数值的期望大于期望的函数值

PS:这都是在f是凸函数的状况下!

  • Jensen不等式是所有不等式的基础,所有不等式都能看做是Jensen不等式利用不同的凸函数推导出来的.

课程传送门

机器学习数学|微积分梯度jensen不等式的更多相关文章

  1. 归并排序、jensen不等式、非线性、深度学习

    前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...

  2. 机器学习数学|Taylor展开式与拟牛顿

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor ...

  3. coursera机器学习笔记-机器学习概论,梯度下降法

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  4. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  5. 机器学习数学|偏度与峰度及其python实现

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E( ...

  6. 数学分析中jensen不等式由浅入深进行教学(转)

    中国知网:数学分析中Jensen不等式由浅入深进行教学

  7. Jensen 不等式

    若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i ...

  8. POJ 1183 反正切函数的应用(数学代换,基本不等式)

    题目链接:http://poj.org/problem?id=1183 这道题关键在于数学式子的推导,由题目有1/a=(1/b+1/c)/(1-1/(b*c))---------->a=(b*c ...

  9. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

随机推荐

  1. Find 找规律,递推

    Find Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatus P ...

  2. The Super Powers

    The Super Powers Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [Subm ...

  3. Eddy's爱好 hdu2204

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    题目链接:http://codeforces.com/problemset/problem/847/I I. Noise Level time limit per test 5 seconds mem ...

  5. 给vue项目添加ESLint

    eslint配置方式有两种: 注释配置:使用js注释来直接嵌入ESLint配置信息到一个文件里 配置文件:使用一个js,JSON或者YAML文件来给整个目录和它的子目录指定配置信息.这些配置可以写在一 ...

  6. WPF中的imagesource 和内存图片的处理

    [转载]ImageSource的使用心得 很多时候,我们会使用图片来装饰UI,比如作为控件背景等. 而这些图片可以分为两种形式,即存在于本地文件系统中的图片和存在于内存中的图片 对于这两种形式的图片, ...

  7. hadoop streaming编程小demo(python版)

    大数据团队搞数据质量评测.自动化质检和监控平台是用django,MR也是通过python实现的.(后来发现有orc压缩问题,python不知道怎么解决,正在改成java版本) 这里展示一个python ...

  8. cocos2dx - tmx地图分层移动处理

    接上一节内容:cocos2dx - 节点管理 瓦片地图(Tiled Map) 在cocos2dx文档中有简单的介绍及使用.详情可以看:http://www.cocos2d-x.org/docs/man ...

  9. Python装饰器,json,pickle

    装饰器 定义:本质是函数,装饰其它函数是为了给其添加新功能: 原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器知识储备: 1.函数即变量: 2.高阶函数 3.嵌套 ...

  10. Java 从键盘输入

    package io; import java.io.*; public class ReadAndWrite { public static void main(String[] args) { I ...