机器学习中的数学

觉得有用的话,欢迎一起讨论相互学习~Follow Me

原创文章,如需转载请保留出处

本博客为七月在线邹博老师机器学习数学课程学习笔记

索引

  • 微积分,梯度和Jensen不等式
  • Taylor展开及其应用
  • 常见概率分布和推导
  • 指数族分布
  • 共轭分布
  • 统计量
  • 矩估计和最大似然估计
  • 区间估计
  • Jacobi矩阵
  • 矩阵乘法
  • 矩阵分解RQ和SVD
  • 对称矩阵
  • 凸优化

微积分与梯度

  • 常数e的计算过程
  • 常见函数的导数
  • 分部积分法及其应用
  • 梯度
  • 上升/下降最快方向
  • 凸函数
  • Jensen不等式

自然常数e

引入

  • 我们知道对于公式\(y=log_{a}x\),x=1时,y=0.则我们是否能找一点a值,使得y函数在(1,0)点的导数为1呢?

    利用导数公式对\(y=log_{a}x\)求导

定理一:极限存在定理

  • 单调有界函数必有极限
  • 单调数列有上线,必有其极限

构造数列Xn证明其单调有上界

  • 又因为其有(1+1)项,则其必比2要大然而又比3要小,则\(2<X_n<3\)

定理二:两边夹定理

自然常数e的推导

  • \[自然常数e可以看做e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\]

微分与积分

常用函数的导数公式

分部积分法

方向导数与梯度

对于方向导数我们也可以视为\[(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}).(cos\varphi.sin\varphi)^{T}\]方向导数顾名思义既是复合函数在某一方向上的导数,表示函数在某一方向上的变化趋势。当在某一方向上的方向导数最大时,即是梯度 当 \[cos\varphi =\frac{\partial f}{\partial x}\\sin\varphi = \frac{\partial f}{\partial y}\] 时,这是方向导数取最大值,即是梯度

对于梯度我们有

  • 方向导数是各个方向上的导数
  • 偏导数连续才有梯度存在
  • 梯度的方向是方向导数中取到最大值的方向,梯度的值是方向导数的最大值


凸函数与Jsnsen不等式

  • 简而言之,即是函数的割线永远位于函数图像的上方.

一阶可微

  • 简而言之,即是函数如果是一个凸函数,且一阶可微,则过函数任意一点做函数的切线,函数的切线永远在函数的下方.

二阶可微

凸函数举例

Jensen不等式

  • Jensen不等式相当于把凸函数的概念反过来说,即是如果f是一个凸函数,任意取一个在f定义域上的(x,y)点,\(\theta\)属于[0,1].
  • 当只有x,y两个参数,即是使用 基本Jensen不等式 ,然而当推广到k个参数时, 即是表示参数的线性加权的函数值总要小于函数值的线性加权.
  • 可以将其推广到概率密度分布上,假设\(\theta\)表示是事件的概率密度K点分布即所加和为1,则函数值的期望大于期望的函数值

PS:这都是在f是凸函数的状况下!

  • Jensen不等式是所有不等式的基础,所有不等式都能看做是Jensen不等式利用不同的凸函数推导出来的.

课程传送门

机器学习数学|微积分梯度jensen不等式的更多相关文章

  1. 归并排序、jensen不等式、非线性、深度学习

    前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...

  2. 机器学习数学|Taylor展开式与拟牛顿

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor ...

  3. coursera机器学习笔记-机器学习概论,梯度下降法

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  4. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  5. 机器学习数学|偏度与峰度及其python实现

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E( ...

  6. 数学分析中jensen不等式由浅入深进行教学(转)

    中国知网:数学分析中Jensen不等式由浅入深进行教学

  7. Jensen 不等式

    若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i ...

  8. POJ 1183 反正切函数的应用(数学代换,基本不等式)

    题目链接:http://poj.org/problem?id=1183 这道题关键在于数学式子的推导,由题目有1/a=(1/b+1/c)/(1-1/(b*c))---------->a=(b*c ...

  9. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

随机推荐

  1. python采用 多进程/多线程/协程 写爬虫以及性能对比,牛逼的分分钟就将一个网站爬下来!

    首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是CPU,承担了所有的计算任务.一个CPU,在一个时间切片里只能运行一个程序. 从操作系统的角度: 进程和线程,都 ...

  2. php使用PHPMailer邮件类发送邮件

    PHPMailer是一个用于发送电子邮件的PHP函数包.它提供的功能包括:*.在发送邮时指定多个收件人,抄送地址,暗送地址和回复地址*.支持多种邮件编码包括:8bit,base64,binary和qu ...

  3. 机器学习理论提升方法AdaBoost算法第一卷

    AdaBoost算法内容来自<统计学习与方法>李航,<机器学习>周志华,以及<机器学习实战>Peter HarringTon,相互学习,不足之处请大家多多指教! 提 ...

  4. Centos7下安装php7

    通过编译的方式安装php7 1. 安装PHP7 ## 下载 wget http://us2.php.net/distributions/php-7.0.2.tar.gz ## 安装 tar zxvf ...

  5. 【记录】Spring项目转化为Spring Web项目

    前言 在将Spring项目转化为Spring Mvc项目时出现了点问题,总是无法成功部署,查阅资料也并没有找到一个完美的解决方案,最后是参考在idea中创建maven web app项目后的目录才成功 ...

  6. Echarts数据可视化series-graph关系图,开发全解+完美注释

    全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...

  7. Mybatis的parameterType传入多个参数

    如果查询的条件有多个的时候,mybatis有三种传入方式: 1.通过注解传入 例如: public interface Mapper(){ public User login(@Param(" ...

  8. 【转载】jQuery全屏滚动插件fullPage.js

    文章转载自dowebok http://www.dowebok.com/ 原文链接:http://www.dowebok.com/77.html 简介 如今我们经常能见到全屏网站,尤其是国外网站.这些 ...

  9. 【学习】如何用jQuery获取iframe中的元素

    (我的博客网站中的原文:http://www.xiaoxianworld.com/archives/292,欢迎遇到的小伙伴常来瞅瞅,给点评论和建议,有错误和不足,也请指出.) 说实在的,以前真的很少 ...

  10. win10 uwp 隐私声明

    本文讲的是如何去写隐私声明. 垃圾微软要求几乎每个应用都要有隐私声明,当然如果你不拿用户信息的话,那么用户声明是一个URL,我们应该把应用声明放在哪? 其实我们简单方法是把隐私声明Privacy Po ...