1.CART简介

CART是一棵二叉树,每一次分裂会产生两个子节点。CART树分为分类树和回归树。

分类树主要针对目标标量为分类变量,比如预测一个动物是否是哺乳动物。

回归树针对目标变量为连续值的情况,比如预测一个动物的年龄。

如果是分类树,将选择能够最小化分裂后节点GINI值的分裂属性;

如果是回归树,选择能够最小化两个节点样本方差的分裂属性。CART跟其他决策树算法一样,需要进行剪枝,才能防止算法过拟合从而保证算法的泛化性能。

2.CART分类树

2.1算法详解

CART分类树预测分类离散型数据,采用基尼指数选择最优特征,同时决定该特征的最优二值切分点。分类过程中,假设有K个类,样本点属于第k个类的概率为Pk,则概率分布的基尼指数定义为

根据基尼指数定义,可以得到样本集合D的基尼指数,其中Ck表示数据集D中属于第k类的样本子集。

如果数据集D根据特征A在某一取值a上进行分割,得到D1,D2两部分后,那么在特征A下集合D的基尼系数如下所示。其中基尼系数Gini(D)表示集合D的不确定性,基尼系数Gini(D,A)表示A=a分割后集合D的不确定性。基尼指数越大,样本集合的不确定性越大。

对于属性A,分别计算任意属性值将数据集划分为两部分之后的Gain_Gini,选取其中的最小值,作为属性A得到的最优二分方案。然后对于训练集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本及S的最优二分方案。

2.1实例详解

针对上述离散型数据,按照体温为恒温和非恒温进行划分。其中恒温时包括哺乳类5个、鸟类2个,非恒温时包括爬行类3个、鱼类3个、两栖类2个,如下所示我们计算D1,D2的基尼指数。

然后计算得到特征体温下数据集的Gini指数,最后我们选择Gain_Gini最小的特征和相应的划分。

3.CART回归树

3.1算法详解

CART回归树预测回归连续型数据,假设X与Y分别是输入和输出变量,并且Y是连续变量。在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树。

选择最优切分变量j与切分点s:遍历变量j,对规定的切分变量j扫描切分点s,选择使下式得到最小值时的(j,s)对。其中Rm是被划分的输入空间,cm是空间Rm对应的固定输出值。

用选定的(j,s)对,划分区域并决定相应的输出值

继续对两个子区域调用上述步骤,将输入空间划分为M个区域R1,R2,…,Rm,生成决策树。

当输入空间划分确定时,可以用平方误差来表示回归树对于训练数据的预测方法,用平方误差最小的准则求解每个单元上的最优输出值。

3.2实例详解

考虑如上所示的连续性变量,根据给定的数据点,考虑1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5切分点。

对各切分点依次求出R1,R2,c1,c2及m(s),例如当切分点s=1.5时,得到R1={1},R2={2,3,4,5,6,7,8,9,10},其中c1,c2,m(s)如下所示。


依次改变(j,s)对,可以得到s及m(s)的计算结果,如下表所示。

当x=6.5时,此时R1={1,2,3,4,5,6},R2={7,8,9,10},c1=6.24,c2=8.9。回归树T1(x)为

然后我们利用f1(x)拟合训练数据的残差,如下表所示

用f1(x)拟合训练数据得到平方误差

第二步求T2(x)与求T1(x)方法相同,只是拟合的数据是上表的残差。可以得到

用f2(x)拟合训练数据的平方误差

继续求得T3(x)、T4(x)、T5(x)、T6(x),如下所示

用f6(x)拟合训练数据的平方损失误差如下所示,假设此时已经满足误差要求,那么f(x)=f6(x)便是所求的回归树。

4.CART剪枝

代价复杂度剪枝算法:

我们将一颗充分生长的树称为T0 ,希望减少树的大小来防止过拟化。但同时去掉一些节点后预测的误差可能会增大,那么如何达到这两个变量之间的平衡则是问题的关键。因此我们用一个变量α 来平衡,定义损失函数如下

  • T为任意子树,|T|为子树T的叶子节点个数。
  • α是参数,权衡拟合程度与树的复杂度。
  • C(T)为预测误差,可以是平方误差也可以是基尼指数,C(T)衡量训练数据的拟合程度。

那么我们如何找到这个合适的α来使拟合程度与复杂度之间达到最好的平衡呢?准确的方法就是将α从0取到正无穷,对于每一个固定的α,我们都可以找到使得Cα(T)最小的最优子树T(α)。

  • 当α很小的时候,T0 是这样的最优子树.
  • 当α很大的时候,单独一个根节点就是最优子树。

尽管α的取值无限多,但是T0的子树是有限个。Tn是最后剩下的根结点,子树生成是根据前一个子树Ti,剪掉某个内部节点后,生成Ti+1。然后对这样的子树序列分别用测试集进行交叉验证,找到最优的那个子树作为我们的决策树。子树序列如下

因此CART剪枝分为两部分,分别是生成子树序列和交叉验证。

5.sklearn

import pandas as pd
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest) #返回预测的准确度accuracy score

feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']

import graphviz
dot_data = tree.export_graphviz(clf, out_file=".\Tree.dot"
,feature_names = feature_name
,class_names=["琴酒","雪莉","贝尔摩德"]
,filled=True
,rounded=True
)
import re
# 打开 dot_data.dot,修改 fontname="支持的中文字体"
f = open("./Tree.dot", "r+", encoding="utf-8")
open('./Tree_utf8.dot', 'w', encoding="utf-8").write(re.sub(r'fontname=helvetica', 'fontname="Microsoft YaHei"', f.read()))
f.close()

cmd:

dot -Tjpg Tree.dot -o tree.jpg

决策树--CART树详解的更多相关文章

  1. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  2. trie字典树详解及应用

    原文链接    http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用   一.知识简介        ...

  3. Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】

    转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...

  4. JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删改查),事件

    JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删 ...

  5. 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)

    原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解    By 岩之痕 目录: 一:综述 ...

  6. Linux dts 设备树详解(二) 动手编写设备树dts

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 前言 硬件结构 设备树dts文件 前言 在简单了解概念之后,我们可以开始尝试写一个 ...

  7. Linux dts 设备树详解(一) 基础知识

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 1 前言 2 概念 2.1 什么是设备树 dts(device tree)? 2. ...

  8. AVL树详解

    AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(B ...

  9. trie树--详解

    文章作者:yx_th000 文章来源:Cherish_yimi (http://www.cnblogs.com/cherish_yimi/) 转载请注明,谢谢合作.关键词:trie trie树 数据结 ...

随机推荐

  1. Javascript学习笔记二——操作DOM

    Javascript学习笔记 DOM操作: 一.GetElementById() ID在HTML是唯一的,getElementById()可以定位唯一的一个DOM节点 二.querySelector( ...

  2. [CF544D]Destroying Roads_最短路_bfs

    D. Destroying Roads 题目大意: In some country there are exactly n cities and m bidirectional roads conne ...

  3. 在docker容器下安装airflow

    本人的环境是基于centos7下来安装的 一.安装docker  下载docker安装包,下载地址:https://download.docker.com/linux/static/stable/x8 ...

  4. Centos7 安装Jenkins (rpm 方式)

    首先说明本教程基于jenkins 2.183,但是其他版本基本差不多,主要说一下其中比较坑的几点,做一个总结. 1.rpm 包的下载 从官网上下载rpm的速度简直让人不能忍受,所以千万不要去官网下载. ...

  5. JAVA汽车4S店管理系统

    JAVA汽车4S店管理系统源码(前台+后台)分为这5个大模块 系统设置 整车销售辅助销售汽修管理 汽修统计1.经理管理(增加 和删除功能)    表设计经理编号经理名年龄性别2.业务员管理(增删改查) ...

  6. hdu4706

    #include<string.h> #include<stdio.h> int main() { int a,b,c,d,i,j,n,m; ][]; ,j=; a<=; ...

  7. 【已解决】Field injection is not recommended和Could not autowired. No beans of 'xxx' type found.

    目录 问题 解决办法 备注 问题 在项目中,我们使用Spring的@Autowired注解去引入其他类时有时候阿里的编码规约插件就会提示:"Field injection is not re ...

  8. git的常用指令(二) git add -A 、git add . 和 git add -u

    git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文件内容修改(modified)以及新文件(new),但不包括被删除的文件. git add -u :他仅监控 ...

  9. spring-cloud 学习一 介绍

    微服务Microservice,跟之相对应的是将功能从开发到交付都打包成一个很大的服务单元,一般称之为Monolith,也称「巨石」架构.微服务实现和实施思路更强调功能单一,服务单元小型化和微型化,倡 ...

  10. QPushButton样式

    QPushButton:hover:!pressed { border: 1px solid #434E7A; }