题目链接

题意:

外星人的母舰可以看成是一棵 n 个节点、 n−1 条边的无向树,树上的节点用 1,2,⋯,n 编号。JYY 的特工已经装备了隐形模块,可以在外星人母舰中不受限制地活动,可以神不知鬼不觉地在节点上安装监听设备。

如果在节点 u 上安装监听设备,则 JYY 能够监听与 u 直接相邻所有的节点的通信。换言之,如果在节点 u 安装监听设备,则对于树中每一条边 (u,v) ,节点 v 都会被监听。

特别注意放置在节点 u 的监听设备并不监听 u 本身的通信,这是 JYY 特别为了防止外星人察觉部署的战术。

JYY 的特工一共携带了 k 个监听设备,现在 JYY 想知道,有多少种不同的放置监听设备的方法,能够使得母舰上所有节点的通信都被监听?为了避免浪费,每个节点至多只能安装一个监听设备,且监听设备必须被用完。

\(n\leq 100000 ,k\leq 100\)。


显然是树形背包DP。

但是,状态比较难设计。如果u没有被监视,则u的子节点必须至少有一个选。所以要加一维表示选不选。

而如果u被监视了,则u的子节点可以都不选。所以要加一维表示u是否被监视。

这样就好理解了。

f1[a+b][0]=(f1[a+b][0]+1ll*x0[a][0]*dp[v[i]][b][0][0])%md;
f1[a+b][1]=(f1[a+b][1]+1ll*x0[a][0]*dp[v[i]][b][0][1]+1ll*x0[a][1]*(dp[v[i]][b][0][0]+dp[v[i]][b][0][1]))%md;
f2[a+b][0]=(f2[a+b][0]+1ll*x1[a][0]*dp[v[i]][b][1][0])%md;
f2[a+b][1]=(f2[a+b][1]+1ll*x1[a][0]*dp[v[i]][b][1][1]+1ll*x1[a][1]*(dp[v[i]][b][1][1]+dp[v[i]][b][1][0]))%md;

关键是复杂度。

首先,常规树形背包是\(O(n^2)\)的。

就是每对点会在lca处贡献复杂度。

但是,这个算法,最初觉得是\(O(nk^2)\)的,实际上是\(O(nk)\)的。

证明:

  1. 根据正常树形背包的复杂度\(O(n^2)\),小于等于k的最多产生\(n/k*k^2\)的复杂度。
  2. 大于k与大于k的合并一次,被合并的就增加k,最多n/k次,最多产生\(n/k*k^2\)的复杂度。
  3. 大于k的与小于等于k的合并时,每个小于等于k的最多被合并一次,所以是\(n*s_1+n*s_2+...+n*s_m\),也是\(nk\)。

还有一种理解,不知道对不对:

把树按照dfs序变为序列。

然后,在子树中枚举取x个,可以理解为取dfs序的前(后)x个。

而合并时,认为一棵子树取后x个,另一棵取前y个。\((x+y\leq k)\)。这可以合并为长x+y的区间。

这其实就是长度不大于k的子串,最多有nk个。

但是,因为有取0个的情况,所以实际做题时,大约有2的常数。但那个常数就忽略了可以。

代码

#include <stdio.h>
#define min(a, b)(a < b ? a: b)
#define md 1000000007
inline int read() {
char ch;
while ((ch = getchar()) < '0' || ch > '9');
int rt = (ch ^ 48);
while ((ch = getchar()) >= '0' && ch <= '9') rt = (rt << 3) + (rt << 1) + (ch ^ 48);
return rt;
}
int dp[100002][102][2][2],f1[102][2],f2[102][2];
int x0[102][2],x1[102][2],sz[100002];
int fr[100002],ne[200002],v[200002],bs = 0,k;
void addb(int a, int b) {
v[bs] = b;
ne[bs] = fr[a];
fr[a] = bs++;
}
void dfs(int u, int fu) {
int si = 0;
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] != fu) {
dfs(v[i], u);
si += sz[v[i]];
}
}
for (int i = 0; i <= min(k, si); i++) x0[i][0] = x1[i][0] = 0;
x0[0][0] = x1[0][0] = 1;
si = 0;
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] == fu) continue;
int rt = sz[v[i]];
for (int a = 0; a <= min(si, k); a++) {
for (int b = 0; b <= min(rt, k - a); b++) {
f1[a + b][0] = (f1[a + b][0] + 1ll * x0[a][0] * dp[v[i]][b][0][0]) % md;
f1[a + b][1] = (f1[a + b][1] + 1ll * x0[a][0] * dp[v[i]][b][0][1] + 1ll * x0[a][1] * (dp[v[i]][b][0][0] + dp[v[i]][b][0][1])) % md;
f2[a + b][0] = (f2[a + b][0] + 1ll * x1[a][0] * dp[v[i]][b][1][0]) % md;
f2[a + b][1] = (f2[a + b][1] + 1ll * x1[a][0] * dp[v[i]][b][1][1] + 1ll * x1[a][1] * (dp[v[i]][b][1][1] + dp[v[i]][b][1][0])) % md;
}
}
si += rt;
for (int a = 0; a <= min(si, k); a++) {
x0[a][0] = f1[a][0];
x0[a][1] = f1[a][1];
x1[a][0] = f2[a][0];
x1[a][1] = f2[a][1];
f1[a][0] = f1[a][1] = f2[a][0] = f2[a][1] = 0;
}
}
for (int a = 0; a <= min(si, k); a++) {
dp[u][a][0][0] = x0[a][1];
dp[u][a][1][0] = (x0[a][0] + x0[a][1]) % md;
}
for (int a = 1; a <= min(si + 1, k); a++) {
dp[u][a][0][1] = x1[a - 1][1];
dp[u][a][1][1] = (x1[a - 1][0] + x1[a - 1][1]) % md;
}
sz[u] = si + 1;
}
int main() {
int n;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) fr[i] = -1;
for (int i = 0; i < n - 1; i++) {
int a,b;
a = read();
b = read();
addb(a, b);
addb(b, a);
}
dfs(1, 0);
printf("%d", (dp[1][k][0][0] + dp[1][k][0][1]) % md);
return 0;
}

[JSOI2018]潜入行动 (树形背包)的更多相关文章

  1. BZOJ5314: [Jsoi2018]潜入行动 (树形DP)

    题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...

  2. [JSOI2018]潜入行动 树形DP_复杂计数

    code #include <cstdio> #include <algorithm> #include <cstring> #include <string ...

  3. BZOJ5314: [Jsoi2018]潜入行动

    BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...

  4. poj2486Apple Tree[树形背包!!!]

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9989   Accepted: 3324 Descri ...

  5. cdoj 1136 邱老师玩游戏 树形背包

    邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. poj 1155 TELE (树形背包dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...

  8. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  9. 【BZOJ5314】[JSOI2018]潜入行动(动态规划)

    [BZOJ5314][JSOI2018]潜入行动(动态规划) 题面 BZOJ 洛谷 题解 不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了 ...

随机推荐

  1. redis源码解读--内存分配zmalloc

    目录 主要函数 void *zmalloc(size_t size) void *zcalloc(size_t size) void zrealloc(void ptr, size_t size) v ...

  2. Intellij IDEA中启动多个微服务--开启Run Dashboard管理

    1.找到workspace.xml 2.添加配置 <option name="configurationTypes"> <set> <option v ...

  3. shell习题第24题:杀进程

    [题目要求] 一台机器负载高,top查看到有很多sh的进程,然后top -c查看可以看到对应的进程命令是sh -c /bin/clear.sh 经分析后发现是因为该脚本执行时间太长,导致后续执行时,上 ...

  4. 剑指offer(9)——用两个栈实现队列

    题目: 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数appendTail和deleteHead,分别完成在队列尾部插入结点和在队列头部删除结点的功能. 思路: 首先定义两个栈stack1. ...

  5. [Vue]vue-router嵌套路由(子路由)

    总共添加两个子路由,分别命名Collection.vue(我的收藏)和Trace.vue(我的足迹) 1.重构router/index.js的路由配置,需要使用children数组来定义子路由,具体如 ...

  6. 基于语法树和概率的AI模型

    语法树是句子结构的图形表示,它代表了句子的推导结果,有利于理解句子语法结构的层次.简单说,语法树就是按照某一规则进行推导时所形成的树. 有了语法树,我们就可以根据其规则自动生成语句,但是语法树本身是死 ...

  7. React/事件系统

    React基于虚拟DOM实现了一个合成事件层,我们所定义的事件处理器会接收到一个合成事件对象的实例事件处理. 并且所有事件都自动绑定在最外层上.如果需要访问原生事件对象,可以使用nativeEvent ...

  8. Windows10+Android Studio 3.5编译项目报错——NDK Resolution Outcome: Project settings: Gradle model version=4.10.1, NDK version is UNKNOWN

    项目背景: 系统有C.D两个盘,Android Studio安装在D盘,sdk安装在C盘. 出现的问题: 从git拉取项目后,一直编译不通过,提示“NDK Resolution Outcome: Pr ...

  9. ASE —— 第二次结对作业

    目录 重现基线模型 基线模型原理 模型的优缺点 模型重现结果 提出改进 改进动机 新模型框架 评价合作伙伴 重现基线模型 基线模型原理 我们选用的的模型为DeepCS,接下来我将解释一下它的原理. 我 ...

  10. 页面使用element-tree

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...