题目链接

题意:

外星人的母舰可以看成是一棵 n 个节点、 n−1 条边的无向树,树上的节点用 1,2,⋯,n 编号。JYY 的特工已经装备了隐形模块,可以在外星人母舰中不受限制地活动,可以神不知鬼不觉地在节点上安装监听设备。

如果在节点 u 上安装监听设备,则 JYY 能够监听与 u 直接相邻所有的节点的通信。换言之,如果在节点 u 安装监听设备,则对于树中每一条边 (u,v) ,节点 v 都会被监听。

特别注意放置在节点 u 的监听设备并不监听 u 本身的通信,这是 JYY 特别为了防止外星人察觉部署的战术。

JYY 的特工一共携带了 k 个监听设备,现在 JYY 想知道,有多少种不同的放置监听设备的方法,能够使得母舰上所有节点的通信都被监听?为了避免浪费,每个节点至多只能安装一个监听设备,且监听设备必须被用完。

\(n\leq 100000 ,k\leq 100\)。


显然是树形背包DP。

但是,状态比较难设计。如果u没有被监视,则u的子节点必须至少有一个选。所以要加一维表示选不选。

而如果u被监视了,则u的子节点可以都不选。所以要加一维表示u是否被监视。

这样就好理解了。

f1[a+b][0]=(f1[a+b][0]+1ll*x0[a][0]*dp[v[i]][b][0][0])%md;
f1[a+b][1]=(f1[a+b][1]+1ll*x0[a][0]*dp[v[i]][b][0][1]+1ll*x0[a][1]*(dp[v[i]][b][0][0]+dp[v[i]][b][0][1]))%md;
f2[a+b][0]=(f2[a+b][0]+1ll*x1[a][0]*dp[v[i]][b][1][0])%md;
f2[a+b][1]=(f2[a+b][1]+1ll*x1[a][0]*dp[v[i]][b][1][1]+1ll*x1[a][1]*(dp[v[i]][b][1][1]+dp[v[i]][b][1][0]))%md;

关键是复杂度。

首先,常规树形背包是\(O(n^2)\)的。

就是每对点会在lca处贡献复杂度。

但是,这个算法,最初觉得是\(O(nk^2)\)的,实际上是\(O(nk)\)的。

证明:

  1. 根据正常树形背包的复杂度\(O(n^2)\),小于等于k的最多产生\(n/k*k^2\)的复杂度。
  2. 大于k与大于k的合并一次,被合并的就增加k,最多n/k次,最多产生\(n/k*k^2\)的复杂度。
  3. 大于k的与小于等于k的合并时,每个小于等于k的最多被合并一次,所以是\(n*s_1+n*s_2+...+n*s_m\),也是\(nk\)。

还有一种理解,不知道对不对:

把树按照dfs序变为序列。

然后,在子树中枚举取x个,可以理解为取dfs序的前(后)x个。

而合并时,认为一棵子树取后x个,另一棵取前y个。\((x+y\leq k)\)。这可以合并为长x+y的区间。

这其实就是长度不大于k的子串,最多有nk个。

但是,因为有取0个的情况,所以实际做题时,大约有2的常数。但那个常数就忽略了可以。

代码

#include <stdio.h>
#define min(a, b)(a < b ? a: b)
#define md 1000000007
inline int read() {
char ch;
while ((ch = getchar()) < '0' || ch > '9');
int rt = (ch ^ 48);
while ((ch = getchar()) >= '0' && ch <= '9') rt = (rt << 3) + (rt << 1) + (ch ^ 48);
return rt;
}
int dp[100002][102][2][2],f1[102][2],f2[102][2];
int x0[102][2],x1[102][2],sz[100002];
int fr[100002],ne[200002],v[200002],bs = 0,k;
void addb(int a, int b) {
v[bs] = b;
ne[bs] = fr[a];
fr[a] = bs++;
}
void dfs(int u, int fu) {
int si = 0;
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] != fu) {
dfs(v[i], u);
si += sz[v[i]];
}
}
for (int i = 0; i <= min(k, si); i++) x0[i][0] = x1[i][0] = 0;
x0[0][0] = x1[0][0] = 1;
si = 0;
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] == fu) continue;
int rt = sz[v[i]];
for (int a = 0; a <= min(si, k); a++) {
for (int b = 0; b <= min(rt, k - a); b++) {
f1[a + b][0] = (f1[a + b][0] + 1ll * x0[a][0] * dp[v[i]][b][0][0]) % md;
f1[a + b][1] = (f1[a + b][1] + 1ll * x0[a][0] * dp[v[i]][b][0][1] + 1ll * x0[a][1] * (dp[v[i]][b][0][0] + dp[v[i]][b][0][1])) % md;
f2[a + b][0] = (f2[a + b][0] + 1ll * x1[a][0] * dp[v[i]][b][1][0]) % md;
f2[a + b][1] = (f2[a + b][1] + 1ll * x1[a][0] * dp[v[i]][b][1][1] + 1ll * x1[a][1] * (dp[v[i]][b][1][1] + dp[v[i]][b][1][0])) % md;
}
}
si += rt;
for (int a = 0; a <= min(si, k); a++) {
x0[a][0] = f1[a][0];
x0[a][1] = f1[a][1];
x1[a][0] = f2[a][0];
x1[a][1] = f2[a][1];
f1[a][0] = f1[a][1] = f2[a][0] = f2[a][1] = 0;
}
}
for (int a = 0; a <= min(si, k); a++) {
dp[u][a][0][0] = x0[a][1];
dp[u][a][1][0] = (x0[a][0] + x0[a][1]) % md;
}
for (int a = 1; a <= min(si + 1, k); a++) {
dp[u][a][0][1] = x1[a - 1][1];
dp[u][a][1][1] = (x1[a - 1][0] + x1[a - 1][1]) % md;
}
sz[u] = si + 1;
}
int main() {
int n;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) fr[i] = -1;
for (int i = 0; i < n - 1; i++) {
int a,b;
a = read();
b = read();
addb(a, b);
addb(b, a);
}
dfs(1, 0);
printf("%d", (dp[1][k][0][0] + dp[1][k][0][1]) % md);
return 0;
}

[JSOI2018]潜入行动 (树形背包)的更多相关文章

  1. BZOJ5314: [Jsoi2018]潜入行动 (树形DP)

    题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...

  2. [JSOI2018]潜入行动 树形DP_复杂计数

    code #include <cstdio> #include <algorithm> #include <cstring> #include <string ...

  3. BZOJ5314: [Jsoi2018]潜入行动

    BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...

  4. poj2486Apple Tree[树形背包!!!]

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9989   Accepted: 3324 Descri ...

  5. cdoj 1136 邱老师玩游戏 树形背包

    邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. poj 1155 TELE (树形背包dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...

  8. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  9. 【BZOJ5314】[JSOI2018]潜入行动(动态规划)

    [BZOJ5314][JSOI2018]潜入行动(动态规划) 题面 BZOJ 洛谷 题解 不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了 ...

随机推荐

  1. PHP之即点即改

    html: <td data-hide="1200" class="px12" id ="<?php echo $v['g_id'];?& ...

  2. PCA降维笔记

    PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...

  3. git this exceeds GitHub's file size limit of 100.00 MB

    git push origin master过程中,出现如下错误 关键词:this exceeds GitHub's file size limit of 100.00 MB 推的时候忽略文件的操作: ...

  4. [C#] LINQ之SelectMany和GroupJoin

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  5. MySQL高版本默认密码查找

    解决方式如下: 1:找到mysql的安装目录到跟目录下找到Data文件夹 2:打开Data/文件夹找到一个以.err结尾的文件用记事本打开,里面记录了你安装Mysql的一些日志,其中就记录了你的初始密 ...

  6. 修改下jsp 默认编码,避免被坑

    修改下jsp 默认编码 ![](http://images2017.cnblogs.com/blog/1128666/201710/1128666-20171017143745927-14235413 ...

  7. 安装mysql时出现 mysql Install/Remove of the Service Denied! 错误的解决办法

    用cmd在mysql的bin目录下面执行: mysqld --install 命令,出现错误: mysql Install/Remove of the Service Denied! 解决方法:以管理 ...

  8. CentOS7使用yum安装PostgreSQL和PostGIS

    更新yum源 CentOS7默认yum源的PostgreSQL版本过低,不适合在本版本上使用.在https://yum.postgresql.org/repopackages.php上找到适合Cent ...

  9. python matplotlib以日期为x轴作图

    from datetime import datetime, date, timedelta import matplotlib.pyplot as plt import tushare as ts ...

  10. Cannot determine value type from string 'xxxxxx'

    Cannot determine value type from string 'xxxxxx' 查了一下,意思就是字段和属性名没有对上. 反复查看代码,字段名和属性名一致. 最后翻阅资料得知是因为构 ...