Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X) >>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.]) >>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_
array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2') >>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)的更多相关文章
- sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...
- 【sklearn】数据预处理 sklearn.preprocessing
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...
- 数据规范化——sklearn.preprocessing
sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() ...
- Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...
- Python数据预处理—归一化,标准化,正则化
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- scikit-learn模块学习笔记(数据预处理模块preprocessing)
本篇文章主要简单介绍sklearn中的数据预处理preprocessing模块,它可以对数据进行标准化.preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到pi ...
- Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...
- python数据预处理for knn
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...
随机推荐
- S3C2440 gpio
WATCHDOG TIMER 原理图 手册 举例 start.S .globl _start _start: /* 关看门狗 */ /* 往WTCON(0x53000000)写0 */ ldr r0, ...
- Linux命令——ldd和ldconfig
转自:Linux系统中“动态库”和“静态库”那点事儿 前言 在调试lua脚本的时候,报错. 我已经再lua脚本中更改了cpath package.cpath = package.cpath .. &q ...
- oj.zstu 4421交税(合数分解成素数)
题目 题意:T组,每一组输入一个数X, 求X最少能分成几个素数的和,输出. 思路: 对于一个大于2的偶数,由哥德巴赫猜想,一定能分成2个素数. 对于一个奇数来说,一定能分成2个或者3个素数之和.如果 ...
- 缺包与maven
一. 缺包 1. 打开pom.xml 将依赖加入. 2. mvn clean install -DskipTests 3. scp target/lib/****.jar(刚刚的依赖的架包) 服务器地 ...
- 第七届蓝桥杯C/C++程序设计本科B组决赛 ——机器人塔(程序大题)
机器人塔 X星球的机器人表演拉拉队有两种服装,A和B.他们这次表演的是搭机器人塔. 类似: A B B A B A A A B B B B B A BA B A B B A 队内的组塔规则是: A 只 ...
- MaxPlus WStr Python 中的字符串传递给 MaxPlus
MaxPlus WStr Python 中的字符串传递给 MaxPlus 在 MaxPlus 中,很多方法的参数使用的字符串的类是 WStr,所以在 Python 中,我们传递字符串的时候,就要把 P ...
- appium+python+iOS 环境搭建与使用中常见问题的解决方案链接
(1)WebDriverAgent 安装入门篇:https://www.cnblogs.com/zhanggui/p/9239827.html 重点摘要: 在WDA的Github上也给出了WDA的特性 ...
- ActionChains方法
click(on_element=None) ——单击鼠标左键 click_and_hold(on_element=None) ——点击鼠标左键,不松开 context_click(on_elemen ...
- Python 高级
GIL面试题如下 描述Python GIL的概念, 以及它对python多线程的影响?编写一个多线程抓取网页的程序,并阐明多线程抓取程序是否可比单线程性能有提升,并解释原因. Guido的声明:ht ...
- IAR平台移植TI OSAL到STC8A8K64S4A12单片机中
玩过TI 的ZigBee或者BLE的人,都会接触到OSAL.OSAL是什么?OSAL英文全称:operating system abstraction layer(操作系统抽象层).基于OSAL的调度 ...