【CQOI2017】老C的键盘
Description
  https://loj.ac/problem/3023
  一句话题意:给你一棵完全二叉树,每条边有一个方向,求这棵树有多少种不同的拓扑序。
Solution
  简化题意后,其实就是一个普及组树形 DP。
  设 \(dp(i,j)\) 表示以点 \(i\) 为根的子树中,\(i\) 号点排第 \(j\) 名的方案数。
  利用 \(j\) 这个辅助维,我们可以枚举点 \(i\) 的排名 \(k\),扫一遍点 \(i\) 的所有儿子,每次会新来一个以 \(v\) 为根的子树合并到以 \(i\) 为根的子树上,枚举点 \(i\) 和点 \(v\) 在各自子树中的排名(记为 \(rank_i\) 和 \(rank_v\)),若题目限制点 \(i\) 排在点 \(v\) 前面,则枚举要满足 \(rank_i+rank_v\le k\),否则题目限制点 \(i\) 排在点 \(v\) 后面,则枚举要满足 \(rank_i+rank_v\gt k\)。
  设从 \([1,k-1]\) 中选 \(rank_i-1\) 个整数的方案数为 \(L\),从 \([k+1,size_i+size_v]\) 中选 \(size_i-rank_i\) 个整数的方案数为 \(R\),则 \(dp(i,k) += dp(i,rank_i)\times dp(v,rank_v)\times L\times R\)。这很好理解。
  最后算时间复杂度,还是那个套路,看起来是 \(O(n^4)\),其实还是 \(O(n^3)\),因为最里面两层循环的最大上界分别为 \(size_i\) 和 \(size_v\),这等价于在两棵子树内选 \(2\) 个点。那么这就是个以前讲过的套路,树上每对点只会在 LCA 处被枚举一次,故最里面两层循环套 dfs 的时间是 \(O(n^2)\),乘上一个枚举 \(k\) 的循环,总时间 \(O(n^3)\)。
【CQOI2017】老C的键盘的更多相关文章
- [CQOI2017]老C的键盘
		
[CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...
 - [BZOJ4824][Cqoi2017]老C的键盘  树形dp+组合数
		
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 218 Solved: 171[Submit][Statu ...
 - [BZOJ4824][CQOI2017]老C的键盘(树形DP)
		
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 193 Solved: 149[Submit][Statu ...
 - bzoj 4824: [Cqoi2017]老C的键盘
		
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
 - [bzoj4824][Cqoi2017]老C的键盘
		
来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...
 - [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘
		
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...
 - Luogu P3757 [CQOI2017]老C的键盘
		
题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...
 - 洛谷 P3757 [CQOI2017]老C的键盘
		
题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...
 - BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)
		
前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...
 - 【题解】CQOI2017老C的键盘
		
建议大家还是不要阅读此文了,因为我觉得这题我的解法实在是又不高效又不优美……只是想要记录一下,毕竟是除了中国象棋之外自己做出的组合dp第一题~ 首先如果做题做得多,比较熟练的话,应该能一眼看出这题所给 ...
 
随机推荐
- AWS EC2避免误删软件包和数据的方法:取消“终止删除”默认配置
			
本文介绍AWS在终止实例的时候如何保留根卷,避免误删软件包和数据. 作者:光环云 尹晓征 在aws控制台创建EC2的时候,我们在添加存储步骤中,如果使用默认配置的情况下,“终止时删除”配置默认是被选中 ...
 - MemCache在.NET中使用Memcached.ClientLibrary详解
			
本文说明:memcached分布式缓存的负载均衡配置比例,数据压缩,socket的详细配置等,以及在.net中的常用方法 首先下载客户端的3个dll,ICSharpCode.SharpZipLib.d ...
 - CodeBlocks 配置
			
CodeBlocks 配置 Code::Blocks 17.12 时间:2019.6 下载网址 http://www.codeblocks.org/downloads/26 ,这里选择的是 mingw ...
 - 【AtCoder】Mujin Programming Challenge 2017
			
Mujin Programming Challenge 2017 A - Robot Racing 如果每个数都是一个一个间隔开的,那么答案是\(n!\) 考虑把一个数挪到1,第二个数挪到3,以此类推 ...
 - 剑指offer12:求解double类型的浮点数base和int类型的整数exponent的次方。  保证base和exponent不同时为0
			
1. 题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.保证base和exponent不同时为0. 2. 思路和方法 分析: 由于 ...
 - while循环,格式化输出,运算符及编码初识
			
一.while循环 1.基本循环(死循环) while 条件: 循环体 2.使用while计数 count = 0 # 数字里面非零的都为True while True: count = count ...
 - adb shell dumpsys [options]的使用
			
adb shell dumpsys [options]该命令用于打印出当前系统信息,默认打印出设备中所有service的信息.由于service比较多,这里选几个用的比较多的service来进行讲解: ...
 - Python中的with语句(上下文管理协议)
			
在平时工作中总会有这样的任务,它们需要开始前做准备,然后做任务,然后收尾清理....比如读取文件,需要先打开,读取,关闭 这个时候就可以使用with简化代码,很方便 1.没有用with语句 f = o ...
 - 第十一章 ZYNQ-MIZ701 PS读写PL端BRAM
			
本篇文章目的是使用Block Memory进行PS和PL的数据交互或者数据共享,通过zynq PS端的Master GP0端口向BRAM写数据,然后再通过PS端的Mater GP1把数据读出来,将 ...
 - C# 将一种类型的数组转化为另一种类型的数组
			
//字符串数组(源数组) "}; //整型数组(目标数组) int[] iNums; //转换方法 iNums = Array.ConvertAll<string, int>(s ...