linux下的进程通信之信号量semaphore
概念: IPC 信号量和内核信号量非常相似,是内核信号量的用户态版本。
优点:每个IPC信号量可以保护一个或者多个信号量值的集合,而不像内核信号量一样只有一个值,这意味着同一个IPC资源可以保护多个独立、共享的数据结构。另外,IPC信号量提供了一种失效安全机制,这是针对进程不能取消以前对信号量执行的操作就死亡的情况的。当进程使用这种机制时,由此引起的操作就是所谓的可取消的信号量操作。当进程死亡时,如果从来没有开始它的操作,那么它的所有IPC信号量都可以恢复成原来的值。这有助于防止其他使用相同信号量的进程无限地停留在阻塞状态,从而导致正在结束的进程不能手工取消它的信号量操作。
缺点:必须和受保护的资源搭配使用,常常和共享内存搭配使用。
基本原理:如果受保护的资源是可用的,那么信号量的值就是正数;如果受保护的资源现不能使用,那么信号量的值就是负数或0.要访问资源的进程试图把信号量的值减1,但是,内核阻塞这个进程,直到在这个信号量上的操作产生一个正值。当进程释放受保护的资源时,就把信号量的值增加1;在这样处理的过程中,其他所有正在等待这个信号量的进程都必须被唤醒。
代码示例:
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/sem.h> union semun
{
int val;
struct semid_ds *buf;
unsigned short *arry;
}; static int sem_id = ; static int set_semvalue();
static void del_semvalue();
static int semaphore_p();
static int semaphore_v(); int main(int argc, char *argv[])
{
char message = 'X';
int i = ; /* 创建信号量 */
sem_id = semget((key_t), , | IPC_CREAT); if(argc > )
{
/* 程序第一次被调用,初始化信号量 */
if(!set_semvalue())
{
fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);
}
/* 设置要输出到屏幕中的信息,即其参数的第一个字符 */
message = argv[][];
sleep();
} for(i = ; i < ; ++i)
{
/* 进入临界区 */
if(!semaphore_p())
{
exit(EXIT_FAILURE);
}
/* 向屏幕中输出数据 */
printf("%c", message);
/* 清理缓冲区,然后休眠随机时间 */
fflush(stdout);
sleep(rand() % );
/* 离开临界区前再一次向屏幕输出数据 */
printf("%c", message);
fflush(stdout);
/* 离开临界区,休眠随机时间后继续循环 */
if(!semaphore_v())
{
exit(EXIT_FAILURE);
}
sleep(rand() % );
}
sleep();
printf("\n%d - finished\n", getpid()); if(argc > )
{
/* 如果程序是第一次被调用,则在退出前删除信号量 */
sleep();
del_semvalue();
}
exit(EXIT_SUCCESS);
} static int set_semvalue()
{
/* 用于初始化信号量,在使用信号量前必须这样做 */
union semun sem_union; sem_union.val = ;
if(semctl(sem_id, , SETVAL, sem_union) == -)
{
return ;
}
return ;
} static void del_semvalue()
{
/* 删除信号量 */
union semun sem_union; if(semctl(sem_id, , IPC_RMID, sem_union) == -)
{
fprintf(stderr, "Failed to delete semaphore\n");
}
} static int semaphore_p()
{
/* 对信号量做减1操作,即等待P(sv)*/
struct sembuf sem_b;
sem_b.sem_num = ;
sem_b.sem_op = -;//P()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, ) == -)
{
fprintf(stderr, "semaphore_p failed\n");
return ;
}
return ;
} static int semaphore_v()
{
/* 这是一个释放操作,它使信号量变为可用,即发送信号V(sv)*/
struct sembuf sem_b;
sem_b.sem_num = ;
sem_b.sem_op = ;//V()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, ) == -)
{
fprintf(stderr, "semaphore_v failed\n");
return ;
}
return ;
}
信号量集合的例子:
#include<stdio.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/sem.h>
#include<errno.h>
#include<string.h>
#include<stdlib.h>
#include<assert.h>
#include<time.h>
#include<unistd.h>
#include<sys/wait.h>
#define MAX_SEMAPHORE 10
#define FILE_NAME "test2.c" union semun{
int val ;
struct semid_ds *buf ;
unsigned short *array ;
struct seminfo *_buf ;
}arg; struct semid_ds sembuf; int main()
{
key_t key ;
int semid ,ret,i;
unsigned short buf[MAX_SEMAPHORE] ;
struct sembuf sb[MAX_SEMAPHORE] ;
pid_t pid ; pid = fork() ;
if(pid < )
{
/* Create process Error! */
fprintf(stderr,"Create Process Error!:%s\n",strerror(errno));
exit() ;
} if(pid > )
{
/* in parent process !*/
key = ftok(FILE_NAME,'a') ;
if(key == -)
{
/* in parent process*/
fprintf(stderr,"Error in ftok:%s!\n",strerror(errno));
exit() ;
} semid = semget(key,MAX_SEMAPHORE,IPC_CREAT|); //创建信号量集合
if(semid == -)
{
fprintf(stderr,"Error in semget:%s\n",strerror(errno));
exit() ;
}
printf("Semaphore have been initialed successfully in parent process,ID is :%d\n",semid);
sleep() ;
printf("parent wake up....\n");
/* 父进程在子进程得到semaphore的时候请求semaphore,此时父进程将阻塞直至子进程释放掉semaphore*/
/* 此时父进程的阻塞是因为semaphore 1 不能申请,因而导致的进程阻塞*/
for(i=;i<MAX_SEMAPHORE;++i)
{
sb[i].sem_num = i ;
sb[i].sem_op = - ; /*表示申请semaphore*/
sb[i].sem_flg = ;
} printf("parent is asking for resource...\n");
ret = semop(semid , sb ,); //p()
if(ret == )
{
printf("parent got the resource!\n");
}
/* 父进程等待子进程退出 */
waitpid(pid,NULL,);
printf("parent exiting .. \n");
exit() ;
}
else
{
/* in child process! */
key = ftok(FILE_NAME,'a') ;
if(key == -)
{
/* in child process*/
fprintf(stderr,"Error in ftok:%s!\n",strerror(errno));
exit() ;
} semid = semget(key,MAX_SEMAPHORE,IPC_CREAT|);
if(semid == -)
{
fprintf(stderr,"Error in semget:%s\n",strerror(errno));
exit() ;
}
printf("Semaphore have been initialed successfully in child process,ID is:%d\n",semid); for(i=;i<MAX_SEMAPHORE;++i)
{
/* Initial semaphore */
buf[i] = i + ;
} arg.array = buf;
ret = semctl(semid , , SETALL,arg);
if(ret == -)
{
fprintf(stderr,"Error in semctl in child:%s!\n",strerror(errno));
exit() ;
}
printf("In child , Semaphore Initailed!\n"); /* 子进程在初始化了semaphore之后,就申请获得semaphore*/
for(i=;i<MAX_SEMAPHORE;++i)
{
sb[i].sem_num = i ;
sb[i].sem_op = - ;
sb[i].sem_flg = ;
} ret = semop(semid , sb , );//信号量0被阻塞
if( ret == - )
{
fprintf(stderr,"子进程申请semaphore失败:%s\n",strerror(errno));
exit() ;
} printf("child got semaphore,and start to sleep 3 seconds!\n");
sleep() ;
printf("child wake up .\n");
for(i=;i < MAX_SEMAPHORE;++i)
{
sb[i].sem_num = i ;
sb[i].sem_op = + ;
sb[i].sem_flg = ;
} printf("child start to release the resource...\n");
ret = semop(semid, sb ,) ;
if(ret == -)
{
fprintf(stderr,"子进程释放semaphore失败:%s\n",strerror(errno));
exit() ;
} ret = semctl(semid , ,IPC_RMID);
if(ret == -)
{
fprintf(stderr,"semaphore删除失败:%s!\n",strerror(errno));
exit() ;
} printf("child exiting successfully!\n");
exit() ;
}
return ;
}
linux下的进程通信之信号量semaphore的更多相关文章
- linux下的进程通信之管道与FIFO
概念:管道是由内核管理的一个缓冲区,相当于我们放入内存中的一个纸条.管道的一端连接一个进程的输出.这个进程会向管道中放入信息.管道的另一端连接一个进程的输入,这个进程取出被放入管道的信息. 优点:不需 ...
- Linux下多任务间通信和同步-概述
Linux下多任务间通信和同步-概述 嵌入式开发交流群280352802,欢迎加入! 在前面,我们学习了两种多任务的实现手段:进程和线程.由于进程是工作在独立的内存空间中,不同的进程间不能直接访问到对 ...
- 操作系统-进程通信(信号量、匿名管道、命名管道、Socket)
进程通信(信号量.匿名管道.命名管道.Socket) 具体的概念就没必要说了,参考以下链接. 信号量 匿名管道 命名管道 Socket Source Code: 1. 信号量(生产者消费者问题) #i ...
- Linux下的进程控制块(PCB)
本文转载自Linux下的进程控制块(PCB) 导语 进程在操作系统中都有一个户口,用于表示这个进程.这个户口操作系统被称为PCB(进程控制块),在linux中具体实现是 task_struct数据结构 ...
- Linux下多任务间通信和同步-信号
Linux下多任务间通信和同步-信号 嵌入式开发交流群280352802,欢迎加入! 1.概述 信号是在软件层次上对中断机制的一种模拟,是一种异步通信方式.信号可以直接进行用户空间进程和内核进程之间的 ...
- linux下监控进程需掌握的四个命令
linux下监控进程需掌握的四个命令 在LInux系统下,最困难的工作之一就是跟踪正在系统中运行的程序,尤其是现在,图形桌面使用很多的程序,只是为了生成一个桌面环境,系统中运行了太多的进程,幸运的 ...
- Linux下的进程与线程(二)—— 信号
Linux进程之间的通信: 本文主要讨论信号问题. 在Linux下的进程与线程(一)中提到,调度器可以用中断的方式调度进程. 然而,进程是怎么知道自己需要被调度了呢?是内核通过向进程发送信号,进程才得 ...
- Linux下多任务间通信和同步-mmap共享内存
Linux下多任务间通信和同步-mmap共享内存 嵌入式开发交流群280352802,欢迎加入! 1.简介 共享内存可以说是最有用的进程间通信方式.两个不用的进程共享内存的意思是:同一块物理内存被映射 ...
- Linux下java进程CPU占用率高分析方法
Linux下java进程CPU占用率高分析方法 在工作当中,肯定会遇到由代码所导致的高CPU耗用以及内存溢出的情况.这种情况发生时,我们怎么去找出原因并解决. 一般解决方法是通过top命令找出消耗资源 ...
随机推荐
- python 操作excle 之第三方库 openpyxl学习
目录 python 操作excle 之第三方库 openpyxl学习 安装 pip install openpyxl 英文文档链接 : 点击这里~ 1,定位excel 2,读取excle中的内容 3, ...
- 页面打开excel
1. File => Stream / MemoryStream FileStream stream = new FileStream(path, FileMode.Open, FileAcce ...
- [转]CentOS 7安装Python3.6过程(让linux系统共存Python2和Python3环境)
CentOS 7系统自带了python2,不过可以不用2版本,直接使用python3运行python脚本就可以,但是千万别去动系统自带的python2,因为有程序依赖目前的python2环境,比如yu ...
- 2019暑期金华集训 Day5 生成函数
自闭集训 Day5 生成函数 一般生成函数 无脑地把序列变成多项式: \[ \{a_i\}\rightarrow A(x)=\sum_{n} a_nx^n \] 形式幂级数 生成函数是一种形式幂级数. ...
- python打包成exe,太大了该怎么解决?
这是一个很长的故事,嫌长的直接看最后的结论 事情经过 上周接了个需求,写了个小工具给客户,他要求打包成exe文件,这当然不是什么难事.因为除了写Python的,绝大多数人电脑里都没有Python编译器 ...
- kde的配置文件
主要是home目录下:/.kde4/share/config/ 如果实在是搞不定,还可以直接将.kde4目录全部删除或者替换即可.
- 正确处理listview的position
当ListView包含有HeaderView或FooterView时,传入getView或者onItemClick的position是怎样的,这是个值得探讨的问题 先列出错误的用法 定义: priva ...
- 我的BO之数据保护
我的BO 1-我的BO之强类型 2-我的BO之数据保护 3-我的BO之状态控制 4-我的BO之导航属性 数据保护指什么 软件的运行离不开数据,数据一般存在对象中.这种对象在 Java 统称为 POJO ...
- Qt实现原生Flow实现不了的Item错误排列效果,类似淘宝商品展示
main.qml import QtQuick 2.12 import QtQuick.Window 2.12 import QtQml.Models 2.12 Window { visible: t ...
- 2019 DDCTF 部分writeup
网上的wp已经很多了,但wp普遍很简略.我尽量写的详细一点. 一.WEB 滴~ 拿到题目后首先右键查看源代码,发现图片是以base64传送的 而且看url发现里面应该是包含了文件名,并且用了某个编码. ...