CF1153F Serval and Bonus Problem 【期望】
题目链接:洛谷
作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的!
首先假设线段长度为1,最后答案乘上$l$即可。
对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段端点分别在$x$的两边),不被区间覆盖的概率为$1-2x(1-x)$。
$$Ans=\sum_{i=k}^n {n\choose i}\int_{0}^1(2x(1-x))^i(1-2x(1-x))^{n-i}dx$$
$$=\sum_{i=k}^n {n\choose i}\int_{0}^1(2x(1-x))^i\sum_{j=0}^{n-i}(-1)^j{n-i\choose j}(2x(1-x))^jdx$$
$$=\sum_{i=k}^n{n\choose i}\sum_{j=0}^{n-i}(-1)^j2^{i+j}{n-i\choose j}\int_0^1x^{i+j}(1-x)^{i+j}dx$$
$$F_i=\int_0^1x^i(1-x)^idx$$
$$=\int_0^1x^i\sum_{j=0}^i(-1)^j{i\choose j}x^jdx$$
$$=\sum_{j=0}^i(-1)^j{i\choose j}\int_0^1x^{i+j}dx$$
$$=\sum_{j=0}^i(-1)^j{i\choose j}\frac{1}{i+j+1}$$
预处理$F_i$之后计算,时间复杂度$O(n^2)$。
#include<bits/stdc++.h>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = ;
int fac[N], inv[N], invfac[N], po[N];
inline void init(int m){
fac[] = ;
for(Rint i = ;i <= m;i ++) fac[i] = (LL) i * fac[i - ] % mod;
inv[] = ;
for(Rint i = ;i <= m;i ++) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
invfac[] = ;
for(Rint i = ;i <= m;i ++) invfac[i] = (LL) invfac[i - ] * inv[i] % mod;
po[] = ;
for(Rint i = ;i <= m;i ++) po[i] = (po[i - ] << ) % mod;
}
inline int C(int n, int m){
if(n < m || m < ) return ;
return (LL) fac[n] * invfac[n - m] % mod * invfac[m] % mod;
}
int n, k, l, ans, f[N];
int main(){
scanf("%d%d%d", &n, &k, &l);
init(n << | );
for(Rint i = k;i <= n;i ++)
for(Rint j = ;j <= i;j ++){
int t = (LL) C(i, j) * inv[i + j + ] % mod;
if(j & ) f[i] = (f[i] + mod - t) % mod; else f[i] = (f[i] + t) % mod;
}
for(Rint i = k;i <= n;i ++){
int t1 = ;
for(Rint j = ;j <= n - i;j ++){
int t2 = (LL) po[i + j] * C(n - i, j) % mod * f[i + j] % mod;
if(j & ) t1 = (t1 + mod - t2) % mod; else t1 = (t1 + t2) % mod;
}
ans = (ans + (LL) t1 * C(n, i) % mod) % mod;
}
printf("%d", (LL) l * ans % mod);
}
CF1153F
据说这个式子还可以用NTT优化到$O(n\log n)$?有兴趣的各位可以思考一下反正我是没兴趣了
upd(2019-10-18):
貌似有一个东西叫做Beta Function.
$$\begin{aligned}\Beta(x,y)&=\int_0^1t^x(1-t)^y\mathrm{d}t & (x,y\in \R_+)\\ \Gamma(z)&=\int_0^{+\infty}x^{z-1}e^{-x}\mathrm{d}x & (\Re(z)>0)\end{aligned}$$
有一些不知道为什么的结论。
$$\begin{aligned}\Gamma(n)&=(n-1)! & (n\in \N_+) \\ \Beta(x,y)&=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\end{aligned}$$
于是上面的$F_i$直接就做完了。稍微化化就可以用NTT来做了。
CF1153F Serval and Bonus Problem 【期望】的更多相关文章
- CF1153F Serval and Bonus Problem FFT
		CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ... 
- CF1153F Serval and Bonus Problem
		Serval and Bonus Problem 1.转化为l=1,最后乘上l 2.对于一个方案,就是随便选择一个点,选在合法区间内的概率 3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/ ... 
- Codeforces 1153F Serval and Bonus Problem [积分,期望]
		Codeforces 思路 去他的DP,暴力积分多好-- 首先发现\(l\)没有用,所以不管它. 然后考虑期望的线性性,可以知道答案就是 \[ \int_0^1 \left[ \sum_{i=k}^n ... 
- Codeforces1153F Serval and Bonus Problem 【组合数】
		题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ... 
- CF1153 F. Serval and Bonus Problem(dp)
		题意 一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望. 数据范围 \(1 \le k \le n \le 2000, ... 
- Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)
		yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ... 
- @codeforces - 1153F@ Serval and Bonus Problem
		目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ... 
- Codeforces Round #551 (Div. 2) EF Solution
		E. Serval and Snake 对于一个矩形,如果蛇的一条边与它相交,就意味着这条蛇从矩形内穿到矩形外,或者从矩形外穿到矩形内.所以如果某个矩形的答案为偶数,意味着蛇的头尾在矩形的同一侧(内或 ... 
- 【Codeforces】Codeforces Round #551 (Div. 2)
		Codeforces Round #551 (Div. 2) 算是放弃颓废决定好好打比赛好好刷题的开始吧 A. Serval and Bus 处理每个巴士最早到站且大于t的时间 #include &l ... 
随机推荐
- 解决https 请求过程中SSL问题
			最近一个项目中用到了https的请求,在实际调用过程中发现之前的http方法不支持https,调用一直报错. 查询了一下,添加几行代码解决问题. public string HttpPost(stri ... 
- call、apply、bind一直是不求甚解!
			一直感觉代码中有call和apply就很高大上(看不懂),但是都草草略过,今天非要弄明白!以前总是死记硬背:call.apply.bind 都是用来修改函数中的this,传参时,call是一个个传参, ... 
- Python练习_集合和深浅拷贝_day7
			1. 1.作业 1.把列表中所有姓周的人的信息删掉(升级题:此题有坑, 请慎重): lst = ['周老二', '周星星', '麻花藤', '周扒皮'] 结果: lst = ['麻花藤'] 2.车牌区 ... 
- Docker启动Mongo报警告WARNING: /sys/kernel/mm/transparent_hugepage/enabled is 'always'.
			警告信息 2019-11-27T09:28:16.659+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_h ... 
- restTemplate源码解析(一)构造restTemplate的Bean实例
			所有文章 https://www.cnblogs.com/lay2017/p/11740855.html 正文 构造一个restTemplate的Bean实例很容易,只需这样配置 @Bean publ ... 
- redis集群1
			redis-trib.rb命令详解 redis-trib.rb是官方提供的Redis Cluster的管理工具,无需额外下载,默认位于源码包的src目录下,但因该工具是用ruby开发的,所以需要准 ... 
- mysql使用GTID跳过事务
			GTID跳过有两种方法,一种是普通的跳过一个事务的方法,另外一个是在基于主库搭建新的slave的时候.一.普通跳过一个事务的方法.通过show slave status\G找到冲突的GTID号.然后执 ... 
- KVM虚拟机高级设置——08 管理远程虚拟机
			在搭建KVM环境——07 带GUI的Linux上安装KVM图形界面管理工具介绍了KVM图形化管理工具,这款工具除了可以管理本地KVM虚拟外,还可以管理远程KVM虚拟机. 输入113机器密码 输入yes ... 
- Linux学习笔记(十一)shell基础:管道符、通配符和其他特殊符号
			一.多命令顺序执行 && || 相当于其他高级语言中的 ? : 二.管道符 [命令1] | [命令2] 命令1的正确输出作为命令2的操作对象 分屏显示结果 netstat -an 命令 ... 
- synchronized 和 ReentrantLock 区别是什么?(未完成)
			synchronized 和 ReentrantLock 区别是什么?(未完成) 
