xgzc— math 专题训练(一)
Lucas定理
当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\)
狄利克雷卷积
定义:\((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\)
然后满足交换律,结合律,分配律
单位元:\(e=[n=1]\),即\(f*e=e*f=f\)
逆元:对于每一个\(f(1)\ne0\)的函数\(f\),存在逆元\(g\)使得\(f*g=e\)
那么\(g(n)\)满足递推式:
\(g(n)=\frac{1}{f(1)}([n=1]-\sum_{i|n,i\ne1}f(i)g(\frac{n}{i}))\)
Extra
定义1:\((f\oplus g)(x)=\sum_{x|d}f(\frac{d}{x})g(d)\)
那么有,\((f*g)\oplus h =f \oplus (g \oplus h)\)
定义2:\((f\cdot g)(x)=f(x)g(x)\)
那么当\(f\)是完全积性函数时,有\((f\cdot g)*(f\cdot h)=f\cdot (g*h)\)
常见数论函数
\(1(x)=1\)
\(id^k(x)=x^k\)
\(\phi(x)=\sum_{i=1}^{x}[gcd(i,x)=1]\)
\(d(x)=\sum_{d|x}1\)
\(\sigma(x)=\sum_{d|x}d\)
\(\mu:1\)的逆元
其中的一些关系:
\(d = 1*1\)
\(id = 1*\phi\)
\(\sigma=1*id=1*1*\phi=d*\phi\)
\(\phi=id*\mu\)
\(1=d*\mu\)
\(id=\sigma*\mu\)
莫比乌斯反演
如果\(g=f*1\),则\(g*\mu=f\)
如果\(g=1\oplus f\),则\(f=\mu \oplus g\)
证明:\(\mu \oplus g=\mu \oplus (1 \oplus f)=(\mu * 1)\oplus f = f\)
例题
[SDOI2015] 约数个数和
求\(\sum_{i=1}^n\sum_{i=1}^md(ij)\)
\(d(ij)=\sum_{a|i}\sum_{b|j}[gcd(a,b)=1]\)
那么,原式等于
\sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[gcd(i,j)=1]
\]
\]
定义:\(S(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\)
void init() {
mu[1] = 1;
for (int i = 2; i <= 50000; i++) {
if (!np[i]) { p[++tot] = i; mu[i] = -1; }
for (int j = 1; j <= tot && p[j] * i <= 50000; j++) {
np[p[j] * i] = 1;
if (!(i % p[j])) break;
mu[p[j] * i] = -mu[i];
}
}
for (int i = 2; i <= 50000; i++) mu[i] += mu[i - 1];
for (int i = 1; i <= 50000; i++)
for (int l = 1, r; l <= i; l = r + 1) {
r = i / (i / l);
S[i] += (r - l + 1) * (i / l);
}
return ;
}
main() {
init();
int T;
scanf("%lld", &T);
while (T--) {
int n, m;
scanf("%lld%lld", &n, &m);
if (n > m) swap(n, m);
int ans = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = min(m / (m / l), n / (n / l));
ans += (mu[r] - mu[l - 1]) * S[n / l] * S[m / l];
}
printf("%lld\n", ans);
}
return 0;
}
[SHOI2015]超能粒子炮·改
求\(\sum_{i=0}^{k}(^n_i)\)
根据\(Lucas\)定理
可以通过对模数相同的放在一块计算
再递归求解即可。
int Lucas(LL n, LL m) {
if (!n || !m) return 1;
return Lucas(n / P, m / P) * C[n % P][m % P] % P;
}
int f(LL n, LL k) {
if (n <= 3000 && k <= 3000) return F[n][k];
return (f(n % P, P - 1) * f(n / P, k / P - 1) % P +
f(n % P, k % P) * Lucas(n / P, k / P) % P) % P;
}
void init() {
for (int i = 0; i <= 3000; i++) C[i][0] = 1;
for (int i = 1; i <= 3000; i++)
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
for (int i = 0; i <= 3000; i++) {
F[i][0] = C[i][0];
for (int j = 1; j <= 3000; j++)
F[i][j] = (F[i][j - 1] + C[i][j]) % P;
}
return ;
}
CF1097F Alex and a TV Show
因为只关心奇偶性,我们考虑使用\(bitset\)维护因子集合\(g(x)\)
操作2是异或
操作3是并
因为\(g=1\oplus f\)
\(f(x)\)是\(x\)在集合出现的次数
反演一下就是,\(f=\mu\oplus g\)
void prework(int n) {
Mu.set();
for (int i = 2; i * i <= n; i++)
for (int j = 1; j * i * i <= n; j++)
Mu[i * i * j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j * i <= n; j++)
mu[i][j * i] = Mu[j], p[j * i][i] = 1;
}
int main() {
prework(7000);
int n, Q;
scanf("%d%d", &n, &Q);
while (Q--) {
int op, x, y, z;
scanf("%d%d%d", &op, &x, &y);
if (op == 1) S[x] = p[y];
else if (op == 2) {
scanf("%d", &z);
S[x] = S[y] ^ S[z];
}
else if (op == 3) {
scanf("%d", &z);
S[x] = S[y] & S[z];
}
else printf("%d", (mu[y] & S[x]).count() & 1);
}
return 0;
}
Luogu5176 公约数
首先,\(gcd(ij,jk,ik)=\frac{gcd(i,j)gcd(j,k)gcd(i,k)}{gcd(i,j,k)}\)
那么,
\(Ans=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2(i,k)^2\)
\(=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2+\sum_i\sum_j\sum_k^2(j,k)^2(i,k)^2+\sum_i\sum_j\sum_k(i,j)^2(i,k)^2\)
那么定义\(F(n,m)=\sum_i\sum_j(i,j)^2\),则\(Ans=F(n,m)*p+F(n,p)*m+F(m,p)*n\)
现在问题就是求\(F(n,m)\)
\(F(n,m)=\sum_i\sum_j(i,j)^2\)
\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]\)
\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu(k)\)
\(=\sum_{d=1}^nd^2\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor\)
到这一步已经可以做到\(O(n ^ \frac{3}{4})\)
考虑优化,
设\(T=kd\)
原式\(=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^2\mu(\frac{T}{d})\)
可以发现后面就是\(id^2*\mu\)
显然是个积性函数,考虑线性筛
\(f(p^0)=1\)
\(f(p)=p^2-1\)
\(f(p^k)=(p^2-1)p^{2(k-1)}=p^2f(p^{k-1})\)
xgzc— math 专题训练(一)的更多相关文章
- xgzc— math 专题训练(二)
费马小定理&欧拉定理 费马小定理: 如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\) 欧拉定理: 当\(a\)与\(n\)互质 ...
- dp专题训练
****************************************************************************************** 动态规划 专题训练 ...
- DP专题训练之HDU 2955 Robberies
打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...
- bryce1010专题训练——LCA
1.Targan算法(离线) http://poj.org/problem?id=1470 /*伪代码 Tarjan(u)//marge和find为并查集合并函数和查找函数 { for each(u, ...
- bryce1010专题训练——LCT&&树链剖分
LCT&&树链剖分专题 参考: https://blog.csdn.net/forever_wjs/article/details/52116682
- bryce1010专题训练——Splay树
Prob Hint BZOJ 3323 文艺平衡树 区间翻转 BZOJ 1251 序列终结者 区间翻转,询问最值 BZOJ 1895 supermemo 区间加,翻转,剪切,询问最值.点插入,删除. ...
- bryce1010专题训练——划分树
1.求区间第K大 HDU2665 Kth number /*划分树 查询区间第K大 */ #include<iostream> #include<stdio.h> #inclu ...
- bryce1010专题训练——树状数组
Bryce1010模板 1.一维树状数组 https://vjudge.net/contest/239647#problem/A[HDU1556] #include<bits/stdc++.h& ...
- Leedcode算法专题训练(数组与矩阵)
1. 把数组中的 0 移到末尾 283. Move Zeroes (Easy) Leetcode / 力扣 class Solution { public void moveZeroes(int[] ...
随机推荐
- 解析spring启动加载dubbo过程
一:简单配置 web.xml <context-param> <param-name>contextConfigLocation</param-name> < ...
- Windows计划任务无法写Log的问题
参照:https://www.cnblogs.com/jonezzz/p/10364153.html 使用WIndows计划任务去执行Exe文件时无法写Log,而Exe双击执行就能写Log,这是由于计 ...
- MySQL5.7主从同步配置
主从同步,将主服务器(master)上的数据复制到从服务器(slave). 应用场景 读写分离,提高查询访问性能,有效减少主数据库访问压力. 实时灾备,主数据库出现故障时,可快速切换到从数据库. 数据 ...
- 怎样绑定this
有三种方法: 1. Function.prototype.call(); 2. Function.prototype.apply(); 3. Function.prototype.bind(); ...
- Unity中的Character Controller
Unity中默认提供了一个Character Controller的组件用于实现角色控制,一个3D的游戏物体,可以直接添加.Character Controller会自动模拟出Capsule Coll ...
- Java数据结构HashMap
java数据结构HashMap /** * <html> * <body> * <P> Copyright JasonInternational</p> ...
- 一个因MySQL大小写敏感导致的问题
做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 00 MYSQL对大小写敏感 见字如面,见标题知内容.你有遇到过因为MYSQL对大小写敏感而被坑的体验吗? 之前看过阿里巴 ...
- sql 视图的好处
第一点:使用视图,可以定制用户数据,聚焦特定的数据. 解释: 在实际过程中,公司有不同角色的工作人员,我们以销售公司为例的话,采购人员,可以需要一些与其有关的数据,而与他无关的数据,对他没有任何意义, ...
- ndk-build 修改输出so位置 (change ndk-build output so lib file path )
期望的目录结构: Folder --- | --- build.bat | --- Source | --- All sources codes *.cpp *.h | --- Android --- ...
- Vue子父组件方法互调
讲干货,不啰嗦,大家在做vue开发过程中经常遇到父组件需要调用子组件方法或者子组件需要调用父组件的方法的情况,现做一下总结,希望对大家有所帮助. 父组件调用子组件方法: 1.设置子组件的ref,父组件 ...