luogu

loj

可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最优策略步数为\(m\),如果\(m\le k\),那么答案就是\(n!*m\) 这里有80'

然后考虑每次操作对其他位置是否操作的影响,打表可以发现在每个位置操作不会影响其他位置上是否操作,大概可以这样想,如果操作的位置\(x\)不是当前位置\(i\)的倍数那根本不可能有影响,如果是当前位置的倍数,那么可以递归考虑其他的是\(i\)倍数\(x\)因数的位置是否改变,发现如果不能再递归了,自己本身状态本来要反转的,因为\(x\)状态反转了,那么就不会改变当前位置状态,回溯的过程中,对于每个位置也只有自己和\(x\)的状态发生要反转,那么也不会影响

所以问题变成有\(a\)个位置要操作,每次等概率改变一个位置是否要操作,如果\(a\le k\)直接操作\(k\)步结束,问期望步数.这等价于每种状态期望出现次数\(+k\),设\(f_i\)为\(i\)个位置要操作的状态期望出现次数,转移大概为\(f_i=[i-1>k]*\frac{n-(i-1)}{n}f_{i-1}+[i+1\le n]*\frac{i+1}{n}f_{i+1}+[i==m]\).然后列出一堆方程后,全部加在一起,消元后可得\(\frac{k+1}{n}f_{k+1}=1\),然后利用刚才的方程推出其他\(f_i\)即可.最终答案为\(n!(k+\sum_{i=k+1}^{n}f_i)\)

//i'm low low
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1e5+10,mod=100003;
LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
void ad(int &x,int y){x+=y,x-=x>=mod?mod:0;}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int ginv(int a){return fpow(a,mod-2);}
int n,kk,a[N],b[N],f[N],m; int main()
{
n=rd(),kk=rd();
for(int i=1;i<=n;++i) a[i]=rd();
for(int i=n;i;--i)
{
for(int j=i+i;j<=n;j+=i) a[i]^=b[j];
if(a[i]) b[i]=1,++m;
}
if(m<=kk)
{
for(int i=1;i<=n;++i) m=1ll*m*i%mod;
printf("%d\n",m);
}
else
{
ad(f[kk+1],1ll*n*ginv(kk+1)%mod);
ad(f[kk+2],1ll*f[kk+1]*n%mod*ginv(kk+2)%mod);
for(int i=kk+3;i<=n;++i)
ad(f[i],1ll*(f[i-1]-1ll*(n-(i-2))*ginv(n)%mod*f[i-2]%mod-(i-1==m)+mod)%mod*n%mod*ginv(i)%mod);
int ans=kk;
for(int i=kk+1;i<=n;++i) ad(ans,f[i]);
for(int i=1;i<=n;++i) ans=1ll*ans*i%mod;
printf("%d\n",ans);
}
return 0;
}

luogu P3750 [六省联考2017]分手是祝愿的更多相关文章

  1. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  2. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  3. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  4. 洛谷 P3750 [六省联考2017]分手是祝愿

    传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...

  5. [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...

  6. 洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)

    题面传送门 首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的--考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着 ...

  7. bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...

  8. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  9. [BZOJ4872][六省联考2017]分手是祝愿

    BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...

随机推荐

  1. linux设置脚本开机自启

    由于在centos7中/etc/rc.d/rc.local的权限被降低了,所以需要赋予其可执行权 chmod +x /etc/rc.d/rc.local 赋予脚本可执行权限假设/opt/script/ ...

  2. 《maven实战》笔记(2)----一个简单maven项目的搭建,测试和打包

    参照<maven实战>在本地创建对应的基本项目helloworld,在本地完成后项目结构如下: 可以看到maven项目的骨架:src/main/java(javaz主代码)src/test ...

  3. C++ STL 已序区间查找算法

    #include <iostream>#include <algorithm>#include <list>#include <functional># ...

  4. shared pointer

    #include <string>#include <fstream>#include <memory>#include <cstdio> class ...

  5. Qt打开文件QFileDialog

    //打开Pts文件按钮点击事件void AnalysisPtsDataTool201905::OnOpenFileButtonClick(){ qDebug()<<"open f ...

  6. [Bayes] Maximum Likelihood estimates for text classification

    Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...

  7. ffprobe读取音视频元数据信息,json格式输出

    命令格式: ffprobe -v quiet -show_format -show_streams -print_format json F:\temp\test1566606924822.wav 输 ...

  8. WPS--world使用格式刷

    1.在空白处左键点击一下即可出现格式刷

  9. 反向代理远端 单台tomcat 使用域名代理

    .环境 nginx 10.1.1.161 公网:123.58.251.166 tomcat 10.1.1.103 .远端tomcat 配置 [root@host---- ~]# netstat -tn ...

  10. C++之cmath常用库函数一览

    cmath是c++语言中的库函数,其中的c表示函数是来自c标准库的函数,math为数学常用库函数. cmath中常用库函数: 函数 作用 int abs(int i); 返回整型参数i的绝对值 dou ...