P2782 友好城市

题目描述

有一条横贯东西的大河,河有笔直的南北两岸,岸上各有位置各不相同的N个城市。北岸的每个城市有且仅有一个友好城市在南岸,而且不同城市的友好城市不相同。每对友好城市都向政府申请在河上开辟一条直线航道连接两个城市,但是由于河上雾太大,政府决定避免任意两条航道交叉,以避免事故。编程帮助政府做出一些批准和拒绝申请的决定,使得在保证任意两条航道不相交的情况下,被批准的申请尽量多。

输入输出格式

输入格式:

第1行,一个整数N,表示城市数。

第2行到第n+1行,每行两个整数,中间用一个空格隔开,分别表示南岸和北岸的一对友好城市的坐标。

输出格式:

仅一行,输出一个整数,表示政府所能批准的最多申请数。

输入输出样例

输入样例#1: 复制

7
22 4
2 6
10 3
15 12
9 8
17 17
4 2
输出样例#1: 复制

4

说明

50% 1<=N<=5000,0<=xi<=10000

100% 1<=N<=2e5,0<=xi<=1e6

数学角度:如果两条线段要保证不  香蕉(相交)

就要保证上面的两个端点的x1>x2

而且下面的两个端点也要y1>y2

这是可以转化成

以上面的坐标排序,然后求下方的最长不下降子序列

用n*log(n)的二分做

二分可以用STL做(STL大法好)

 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=2e5+;
int n;
struct ii{
int n,b;
}a[MAXN];
bool mmp(ii x,ii y)
{
return x.n<y.n;
}
int x[MAXN],len;
int main()
{
cin>>n;
for(int i=;i<=n;++i)
{
scanf("%d%d",&a[i].n,&a[i].b);
}
sort(a+,a++n,mmp);
x[++len]=a[len].b;
for(int i=;i<=n;++i)
{
if(x[len]<a[i].b)
{
x[++len]=a[i].b;
}else
{
int j=lower_bound(x+,x++len,a[i].b)-x;
x[j]=a[i].b;
}
}
cout<<len;
return ;
}

洛谷luogu2782的更多相关文章

  1. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  2. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  3. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  4. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  5. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  6. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  7. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  8. 洛谷八月月赛Round1凄惨记

    个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...

  9. 洛谷 P1379 八数码难题 Label:判重&&bfs

    特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...

随机推荐

  1. ubuntu安装启动redis

    1.下载安装 sudo apt-get  install  build-essential wget http://redis.googlecode.com/files/redis-2.2.13.ta ...

  2. centos下mysql 5源码安装全过程记录

    参考:http://blog.csdn.net/mycwq/article/details/24488691 安装cmake,mysql 5.5以后的版本要通过cmake进行编译 在新装的CentOS ...

  3. css解决无论页面长短footer永远置底

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. SQL query - check latest 3 days failed job.

    select top 100 js.last_run_date ,j.name, js.step_id,js.step_name,js.last_run_date,jsl.log,jh.message ...

  5. 关于ajax原理介绍

    1.ajax技术的背景 不可否认,ajax技术的流行得益于google的大力推广,正是由于google earth.google suggest以及gmail等对ajax技术的广泛应用,催生了ajax ...

  6. Gibbs Sampling深入理解

    二维Gibbs Sampling算法 Gibbs Sampling是高维概率分布的MCMC采样方法.二维场景下,状态(x, y)转移到(x’, y’),可以分为三种场景 (1)平行于y轴转移,如上图中 ...

  7. LDA模型了解及相关知识

    什么是LDA? LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.贝叶斯相关知识:先验分布 + 数据(似然)= 后验分布. 贝叶斯模 ...

  8. QT中添加 动态库(.so) 和 静态库 (.a) 的方法

    在QT 的Makefile文件中: 1 添加动态库,如lipcap.so 则,在LIBS一行中添加“-L/usr/local/lib -lpcap”,依据自己的情况修改libpcap.so的路径 2 ...

  9. Codeforce 835A - Key races

    Two boys decided to compete in text typing on the site "Key races". During the competition ...

  10. Django之连接远程mysql数据库

    1.创建Django项目(test) 进入配置文件settings.py 192.168.83.129:所需要远程连接数据库的ip地址 2.进入到远程连接的主机,修改/etc/mysql/mysql. ...