题目地址

题目链接

题解

注,下方\((i,j)\)均指\(gcd(i,j)\),以及证明过程有一定的跳步,请确保自己会莫比乌斯反演的基本套路。

介绍本题的\(O(n)\)和\(O(n\sqrt{n})\)做法,本题还有\(O(nlogn)\)做法,需要用到欧拉函数,或者是从质因子角度考虑也可以得到另外一个\(O(n)\)做法。

题目就是求

\[\prod_{i=1}^n\prod_{j=1}^n\frac{ij}{(i,j)^2}
\]

考虑分解一下

\[\prod_{i=1}^n\prod_{j=1}^n\frac{ij}{(i,j)^2}=\frac{\prod_{i=1}^n\prod_{j=1}^nij}{\prod_{i=1}^n\prod_{j=1}^n(i,j)^2}
\]

对于分子可得

\[\begin{aligned}
&\prod_{i=1}^n\prod_{j=1}^nij\\
&=\prod_{i=1}^ni\prod_{j=1}^nj\\
&=\prod_{i=1}^ni*n!\\
&=(n!)^{2n}
\end{aligned}
\]

对于分母,我们考虑莫比乌斯反演

\[\begin{aligned}
&\prod_{i=1}^n\prod_{j=1}^n(i,j)^2\\
&=\prod_{d=1}^nd^{2\sum_{i=1}^n\sum_{j=1}^n[(i,j)=d]}\\
&=\prod_{d=1}^nd^{2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]}\\
&=\prod_{d=1}^nd^{2\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor^2}\\
\end{aligned}
\]

至此,枚举\(d\),对指数整除分块,即可\(O(n\sqrt{n})\)解决此题。

容易发现\(\lfloor\frac{n}{d}\rfloor\)是可以整除分块的。那么怎么处理区间\([l,r]\)的\(d\)呢,将它展开,其实就是\(\frac{r!}{(l-1)!}\),由于出题人卡空间,所以可以直接计算阶乘而不是预处理(复杂度同样是\(O(n)\),每个数只会被遍历一次)

那么就可以做到\(O(n)\)解决本题了。

#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std; const int mod = 104857601;
const int p = 104857600;
const int N = 1000010; bool vis[N];
short mu[N];
int pr[N], cnt = 0;
int fac; int power(int a, int b, int Mod) {
int ans = 1;
while(b) {
if(b & 1) ans = (ll)ans * a % Mod;
a = (ll)a * a % Mod;
b >>= 1;
}
return ans % Mod;
} void init(int n) {
mu[1] = 1;
for(int i = 2; i <= n; ++i) {
if(!vis[i]) pr[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i * pr[j] <= n; ++j) {
vis[i * pr[j]] = 1;
if(i % pr[j] == 0) break;
mu[i * pr[j]] = -mu[i];
}
mu[i] += mu[i - 1];
}
fac = 1;
for(int i = 1; i <= n; ++i) fac = (ll)fac * i % mod;
} int n; int calc2(int n) {
int ans = 0;
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + (ll)(n / l) * (n / l) % p * (mu[r] - mu[l - 1] + p) % p) % p;
}
return ans % p;
} int main() {
scanf("%d", &n);
init(n);
int ans = 1;
int sum = power((ll)fac * fac % mod, n, mod);
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l); fac = 1ll;
for(int i = l; i <= r; ++i) fac = (ll)fac * i % mod;
int t = power((ll)fac * fac % mod, calc2(n / l), mod);
ans = (ll)ans * t % mod;
}
printf("%lld\n", (ll)sum * power(ans, mod - 2, mod) % mod);
}

LuoguP5221 Product的更多相关文章

  1. uva 11059 maximum product(水题)——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB1QAAAMcCAIAAABo0QCJAAAgAElEQVR4nOydW7msuhKF2wIasIAHJK

  2. [LeetCode] Product of Array Except Self 除本身之外的数组之积

    Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...

  3. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. vector - vector product

    the inner product Givens two vectors \(x,y\in \mathbb{R}^n\), the quantity \(x^\top y\), sometimes c ...

  5. 1 Maximum Product Subarray_Leetcode

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  6. Leetcode Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. Where product development should start

    We all need to know our customers in order to create products they’ll actually buy. This is why the  ...

  8. [LintCode] Product of Array Except Self 除本身之外的数组之积

    Given an integers array A. Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WI ...

  9. sp_addlinkedserver '(null)' is an invalid product name

    使用SSMS 2008客户端工具逆向生成了创建链接服务器的脚本时,在测试环境执行是报如下错误:'(null)' is an invalid product name. USE [master] GO ...

随机推荐

  1. Sql 嵌套循环

    DECLARE @i INT ,@j INT BEGIN PRINT 'satrt i:'+CAST(@i AS varchar) BEGIN PRINT 'j:'+CAST(@j AS varcha ...

  2. Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)

    题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...

  3. mysql的指令

    mysql有一下几方面的特性: 1:多语言支持 2:可以移植性好 3:免费开源 4:高效(支持多线程,充分利用cpu资源,运行速度非常) 5:支持大量数据查询和储存 6:操作简单易于学习 其实数据库就 ...

  4. qt5 移植 交叉编译出现错误

    类似这样的错误,当时没有完整的记下来,undefined reference to `std::__detail::_List_node_base@GLIBCXX_3.4.10 当时是在编译qt5cl ...

  5. vue 去掉路由中的#

    在router.js中修改, const router = new VueRouter({ mode: 'history', routes: [...] })

  6. Django后端项目----restful framework 认证源码流程

    一.请求到来之后,都要先执行dispatch方法,dispatch方法方法根据请求方式的不同触发get/post/put/delete等方法 注意,APIView中的dispatch方法有很多的功能 ...

  7. vue 实现modal

    本文只是作为练习弹出框,弹框内部的东西需要进行自定义添加,主要对更新,删除,新建 ,提示四种弹框进行实现,例子中只是简单的组件应用 Modal.vue文件 <template> <d ...

  8. dubbo原理

    1,观察DubboBeanDefinitionParser 的构造方法,给它打一个断点,发现其前一步在DubboNamespaceHandler 应用启动会连续调此方法 DubboBeanDefini ...

  9. Web安全学习笔记之更新kali国内源

    vi /etc/apt/sources.list #中科大 deb http://mirrors.ustc.edu.cn/kali kali-rolling main non-free contrib ...

  10. django图书管理系统实例

    首页,其他页面全部继承首页的上半部分 点击发布图书页面 首页点击书名,跳转到图书信息界面,该界面可删除图书 项目结构 #views.py from django.shortcuts import re ...