LuoguP5221 Product
题目地址
题解
注,下方\((i,j)\)均指\(gcd(i,j)\),以及证明过程有一定的跳步,请确保自己会莫比乌斯反演的基本套路。
介绍本题的\(O(n)\)和\(O(n\sqrt{n})\)做法,本题还有\(O(nlogn)\)做法,需要用到欧拉函数,或者是从质因子角度考虑也可以得到另外一个\(O(n)\)做法。
题目就是求
\]
考虑分解一下
\]
对于分子可得
&\prod_{i=1}^n\prod_{j=1}^nij\\
&=\prod_{i=1}^ni\prod_{j=1}^nj\\
&=\prod_{i=1}^ni*n!\\
&=(n!)^{2n}
\end{aligned}
\]
对于分母,我们考虑莫比乌斯反演
&\prod_{i=1}^n\prod_{j=1}^n(i,j)^2\\
&=\prod_{d=1}^nd^{2\sum_{i=1}^n\sum_{j=1}^n[(i,j)=d]}\\
&=\prod_{d=1}^nd^{2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]}\\
&=\prod_{d=1}^nd^{2\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor^2}\\
\end{aligned}
\]
至此,枚举\(d\),对指数整除分块,即可\(O(n\sqrt{n})\)解决此题。
容易发现\(\lfloor\frac{n}{d}\rfloor\)是可以整除分块的。那么怎么处理区间\([l,r]\)的\(d\)呢,将它展开,其实就是\(\frac{r!}{(l-1)!}\),由于出题人卡空间,所以可以直接计算阶乘而不是预处理(复杂度同样是\(O(n)\),每个数只会被遍历一次)
那么就可以做到\(O(n)\)解决本题了。
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const int mod = 104857601;
const int p = 104857600;
const int N = 1000010;
bool vis[N];
short mu[N];
int pr[N], cnt = 0;
int fac;
int power(int a, int b, int Mod) {
int ans = 1;
while(b) {
if(b & 1) ans = (ll)ans * a % Mod;
a = (ll)a * a % Mod;
b >>= 1;
}
return ans % Mod;
}
void init(int n) {
mu[1] = 1;
for(int i = 2; i <= n; ++i) {
if(!vis[i]) pr[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i * pr[j] <= n; ++j) {
vis[i * pr[j]] = 1;
if(i % pr[j] == 0) break;
mu[i * pr[j]] = -mu[i];
}
mu[i] += mu[i - 1];
}
fac = 1;
for(int i = 1; i <= n; ++i) fac = (ll)fac * i % mod;
}
int n;
int calc2(int n) {
int ans = 0;
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + (ll)(n / l) * (n / l) % p * (mu[r] - mu[l - 1] + p) % p) % p;
}
return ans % p;
}
int main() {
scanf("%d", &n);
init(n);
int ans = 1;
int sum = power((ll)fac * fac % mod, n, mod);
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l); fac = 1ll;
for(int i = l; i <= r; ++i) fac = (ll)fac * i % mod;
int t = power((ll)fac * fac % mod, calc2(n / l), mod);
ans = (ll)ans * t % mod;
}
printf("%lld\n", (ll)sum * power(ans, mod - 2, mod) % mod);
}
LuoguP5221 Product的更多相关文章
- uva 11059 maximum product(水题)——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB1QAAAMcCAIAAABo0QCJAAAgAElEQVR4nOydW7msuhKF2wIasIAHJK
- [LeetCode] Product of Array Except Self 除本身之外的数组之积
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- [LeetCode] Maximum Product Subarray 求最大子数组乘积
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- vector - vector product
the inner product Givens two vectors \(x,y\in \mathbb{R}^n\), the quantity \(x^\top y\), sometimes c ...
- 1 Maximum Product Subarray_Leetcode
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- Leetcode Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- Where product development should start
We all need to know our customers in order to create products they’ll actually buy. This is why the ...
- [LintCode] Product of Array Except Self 除本身之外的数组之积
Given an integers array A. Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WI ...
- sp_addlinkedserver '(null)' is an invalid product name
使用SSMS 2008客户端工具逆向生成了创建链接服务器的脚本时,在测试环境执行是报如下错误:'(null)' is an invalid product name. USE [master] GO ...
随机推荐
- kali linux 基本命令(第一批)
pwd , rm ,locate ,cat ,head , clear ,ls ,cd ,mkdir ,touch ,ec ...
- 如何在Sitecore CMS中管理桌面快捷方式
当您在Sitecore的桌面模式下工作时,创建快捷方式很有用.快捷方式允许您在选择特定项目的情况下打开内容编辑器,而无需深入了解内容树. Sitecore 8 Sitecore 7 Sitecore ...
- 【Redis学习之六】Redis数据类型:集合和有序集合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 redis-2.8.18 一.集合 Set无序的.去重的元素 ...
- Java重排序
重排序数据依赖性 如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性.数据依赖分下列三种类型: 名称 代码示例 说明 写后读 a = 1;b = a; 写一个 ...
- 关于SQL语句中的distinct和group by
两种都能实现去重功能.区别: distinct只是将重复的行从结果中出去: group by是按指定的列分组,一般这时在select中会用到聚合函数. distinct是把不同的记录显示出来 grou ...
- iframe使用
iframe是一个前端页面的内联框架(即行内框架),使用很方便, <!--嵌套子页面--> <script type="text/x-template" id=& ...
- AtCoder Beginner Contest 086 (ABCD)
A - Product 题目链接:https://abc086.contest.atcoder.jp/tasks/abc086_a Time limit : 2sec / Memory limit : ...
- PHP json_encode函数中需要注意的地方
在php中使用 json_encode() 内置函数可以使用得php中的数据更好的与其它语言传递与使用. 这个函数的功能是将数组转换成json数据存储格式: 1 <?php 2 $arr=arr ...
- 安装ES6及HEAD插件
1.下载相应npm包 es6地址:https://www.elastic.co/downloads/elasticsearch head插件地址:https://github.com/mobz/ela ...
- 在linux系统中安装redis
使用的工具是 连接上虚拟机,进入安装文件的目录 进入redis压缩包中 将压缩包解压: tar -zxvf redis-2.8.3.tar.gz 进入这个文件中: cd redis-2.8.3 进入 ...