ARM下的对齐处理   
from DUI0067D_ADS1_2_CompLib

3.13 type  qulifiers

有部分摘自ARM编译器文档对齐部分  
对齐的使用:  
1.__align(num)  
   这个用于修改最高级别对象的字节边界。在汇编中使用LDRD或者STRD时  
   就要用到此命令__align(8)进行修饰限制,来保证数据对象是相应对齐。  
   这个修饰对象的命令最大是8个字节限制,可以让2字节的对象进行4字节  
   对齐,但是不能让4字节的对象2字节对齐。  
   __align是存储类修改,他只修饰最高级类型对象,不能用于结构或者函数对象。

比如:__align(4) u8 mem1base[MEM1_MAX_SIZE];//保证分配的数组空间4字节对齐,同时保证数组首地址可被4整除
     
2.__packed   
  __packed是进行一字节对齐  
  1.不能对packed的对象进行对齐  
  2.所有对象的读写访问都进行非对齐访问  
  3.float及包含float的结构联合及未用__packed的对象将不能字节对齐  
  4.__packed对局部整形变量无影响  
  5.强制由unpacked对象向packed对象转化是未定义,整形指针可以合法定  
  义为packed。  
     __packed int* p;  //__packed int 则没有意义  
  6.对齐或非对齐读写访问带来问题  
  __packed struct STRUCT_TEST  
{  
  char a;  
  int b;  
  char c;  
}  ;    //定义如下结构此时b的起始地址一定是不对齐的  
         //在栈中访问b可能有问题,因为栈上数据肯定是对齐访问[from CL]  
//将下面变量定义成全局静态不在栈上   
static char* p;  
static struct STRUCT_TEST a;  
void Main()  
{  
__packed int* q;  //此时定义成__packed来修饰当前q指向为非对齐的数据地址下面的访问则可以

p = (char*)&a;            
q = (int*)(p+1);

*q = 0x87654321;   
/*     
得到赋值的汇编指令很清楚  
ldr      r5,0x20001590 ; = #0x12345678  
[0xe1a00005]   mov      r0,r5  
[0xeb0000b0]   bl       __rt_uwrite4  //在此处调用一个写4byte的操作函数   
        
[0xe5c10000]   strb     r0,[r1,#0]   //函数进行4次strb操作然后返回保证了数据正确的访问  
[0xe1a02420]   mov      r2,r0,lsr #8  
[0xe5c12001]   strb     r2,[r1,#1]  
[0xe1a02820]   mov      r2,r0,lsr #16  
[0xe5c12002]   strb     r2,[r1,#2]  
[0xe1a02c20]   mov      r2,r0,lsr #24  
[0xe5c12003]   strb     r2,[r1,#3]  
[0xe1a0f00e]   mov      pc,r14  
*/

/*  
如果q没有加__packed修饰则汇编出来指令是这样直接会导致奇地址处访问失败  
[0xe59f2018]   ldr      r2,0x20001594 ; = #0x87654321  
[0xe5812000]   str      r2,[r1,#0]  
*/

//这样可以很清楚的看到非对齐访问是如何产生错误的  
//以及如何消除非对齐访问带来问题  
//也可以看到非对齐访问和对齐访问的指令差异导致效率问题  
}

比如:

typedef __packed struct READ_Command
{
    u_char code;
    u_int addr;
    u_char len;
} READ_Command;

typedef  struct READ_Command
{
    u_char code;
    u_int addr;
    u_char len;
} READ_Command;
的区别是什么啊?
回答:没有__packed的会出现字对齐等也就是,char型的有可能是占用4个字节的长度的内存空间有__packed 的就不会,就肯定是1个字节的内存空间,是gcc编译器的关键字。(不止vc下面32位的系统里面的内存数据的存取是32位的,处理的时候都是4个字节为单位,通常也就是int的长度。如果不定义压缩方式,也就是编译选项没有诸如#pragma pack(1)之类的,那么系统会进行4字节对齐)
注意:_packed只是某种编译器的格式压缩,有的是pack呢,对不同的CPU压缩的对齐方式也不一样,在使用了该关键以后在进行操作时需要格外小心。
声明结构类型时,可以包含一个保留字packed,用于实现压缩数据存储。
      当一个记录类型在   {$A-}   状态下声明或者声明中包括了保留字   packed   时,记录中的字段不被调整,而替换为赋予连续的偏移量。这样一个压缩记录的总尺寸就是所有字段的尺寸的和。因为数据调整尺寸可能改变(如不同版本的编译器对同一种数据类型的调整值可能不同),所以当想要把记录写入磁盘时或者在内存中传递到另一模块而该模块由不同版本的编译器编译时,最好还是压缩所有的记录。(delphi borland 中也有该关键字)
 
3.在 Cotex-M3 programming manual 中有提到对齐问题
  1.通常编译器在生成代码的时候都会进行结构体填充,保证(结构体内部成员)最高性能的对齐方式。
  2.编译器自动分配出来结构体的内存(比如定义为全局变量或局部变量)肯定是对齐的。
  3.查阅帮助文档的malloc部分,mdk的标准malloc申请的内存区时8字节对齐的。
  4.若自定义的malloc函数本身没有对分配的内存实现4字节或以上的对齐操作,分配出来的不对齐的内存,编译器是不知道的,所以很可能会产生问题。
     此时最好的解决方式在内存池数组前添加__align(4)关键字,只需保证自定义malloc分配出来的首地址是4字节对齐。
     比如:__align(4) u8 mem1base[MEM1_MAX_SIZE];
 
相关更多stm32字节对齐问题的讨论,请参考正点原子相关帖子http://www.openedv.com/thread-7415-1-1.html。
其中问题的关键就在于正点原子自定义的mymalloc函数没有实现4字节对齐。

stm32中字节对齐问题(__align(n),__packed用法)的更多相关文章

  1. c++内存中字节对齐问题详解

    一.什么是字节对齐,为什么要对齐?    现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址 ...

  2. keil mdk+stm32的ac5和 ac6两个编译器下的字节对齐操作方法

    最近在使用ac6.9的编译器,编译速度是真的很快,使用stm32的hal库编译速度也比ac5的编译器快很多.本文试验stm32中字节对齐的代码测试,主要是结构体,因为结构体中实际项目中用到最多,同时在 ...

  3. ARM字节对齐问题详解

    一.什么是字节对齐,为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这 ...

  4. C语言字节对齐问题详解

    引言 考虑下面的结构体定义: typedef struct{ char c1; short s; char c2; int i; }T_FOO; 假设这个结构体的成员在内存中是紧凑排列的,且c1的起始 ...

  5. C语言字节对齐问题详解(对齐、字节序、网络序等)

    首先说明一下,本文是转载自: http://www.cnblogs.com/clover-toeic/p/3853132.html 博客园用的少,不知道怎么发布转载文章,只能暂时这样了. 引言 考虑下 ...

  6. struct 字节对齐详解

    一.什么是字节对齐,为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问, ...

  7. C语言字节对齐问题详解【转】

    引言 转自:http://www.cnblogs.com/clover-toeic/p/3853132.html 考虑下面的结构体定义: 1 typedef struct{ 2 char c1; 3 ...

  8. [转]C语言字节对齐问题详解

    C语言字节对齐问题详解 转载:https://www.cnblogs.com/clover-toeic/p/3853132.html 引言 考虑下面的结构体定义: typedef struct{ ch ...

  9. C语言结构体的字节对齐原则

    为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据 ...

随机推荐

  1. Bootstrap自动定位浮标

    前面的话 Affix 插件主要功能就是通过插件给某个元素(需要固定的元素)添加或删除position:fixed,实现元素在浏览器窗口的粘性固定效果.本文将详细介绍Bootstrap自动定位浮标 基本 ...

  2. 转 PV、TPS、QPS 计算方法

    PV.TPS.QPS是怎么计算出来的?   QPS = req/sec = 请求数/秒 [QPS计算PV和机器的方式] QPS统计方式 [一般使用 http_load 进行统计]QPS = 总请求数 ...

  3. MT【239】离心率最大

    已知点$A$为椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$的左顶点,$O$为坐标原点,过椭圆的右焦点$F$作垂直于$x$轴的直线$l$.若直 ...

  4. 开源工作流程引擎ccflow多人待办处理模式的详解

    多人待办工作处理模式,也是待办处理模式.是当接受的节点是多个人的时候,如何处理待办? 根据不用的场景,ccbpm把多人在普通节点下的处理模式分为如下几种. 抢办模式: A发送到B ,B节点上有n个人可 ...

  5. 自学Python6.2-类、模块、包

    自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...

  6. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  7. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  8. 2019.3.18考试&2019.3.19考试&2019.3.21考试

    2019.3.18 C O D E T1 树上直接贪心,环上for一遍贪心 哇说的简单,码了将近一下午终于码出来了 感觉自己码力/写题策略太糟糕了,先是搞了一个细节太多的写法最后不得不弃疗了,然后第二 ...

  9. jdbc操作数据库(详细)

    JDBC是由java编程语言编写的类及接口组成,同时它为程序开发人员提供了一组用于实现对数据库访问的JDBC API,并支持SQL语言.利用JDBC可以将JAVA代码连接到oracle.DB2.SQL ...

  10. EOJ2018.10 月赛(B 数学+思维题)

    传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...