<题目链接>

题目描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。

输入
输入的第一行为一个整数n,表示棋盘的大小。 
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。 
输出
输出一个整数,表示总共有多少种放法。 
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
  2
解题分析:
此题与n皇后问题十分类似,也是利用递归回溯求解,因为每行只能放一个白皇后,所以可以用一维数组记录皇后所放的位置,如 qw[x]=i,表明白皇后放在第x行第i列(黑皇后类似)。这题放2n个皇后,我采取的做法是,先放n个黑皇后,再放n个白皇后,具体实现见代码,一些细节方面我都标注出来了,并且做了详细解释。
 #include <cstdio>
#include <cstring>
#include <cmath> #define clr(a,b) memset(a,b,sizeof(a))
int n,ans;
int map[][];
int qw[],qb[]; //白、黑皇后对应行所在的列数
int vis[][];
bool juge(int x,int cal[]){
if(!map[x][cal[x]]||vis[x][cal[x]])return false; //如果该点为0或者已经有皇后,则不能放
for(int i=;i<x;i++){
if(cal[i]==cal[x]||(abs(i-x)==abs(cal[i]-cal[x])))return false; //与之前放的同色皇后不在同一列,不在同一对角线
}
return true;
}
void init(){
ans=;
clr(vis,);clr(qw,);clr(qb,);
}
void dfs_w(int x){ //放白皇后
if(x==n+){
ans++;
return;
}
for(int i=;i<=n;i++){
qw[x]=i;
if(juge(x,qw)){
vis[x][i]=;
dfs_w(x+);
vis[x][i]=;
}
}
}
void dfs_b(int x){ //放黑皇后
if(x==n+){ //这里只用判断是不是到达第n+1行就能判断是否放了n个黑皇后,不用另外用一个变量记录放的黑皇后的数量
dfs_w(); //因为如果某一行没有放黑皇后,那么它根本就不能够向下一行搜索
return;
}
for(int i=;i<=n;i++){
qb[x]=i; //这里先放皇后再判断也是没问题的,因为如果放了皇后之后,发现不符合,这也没关系,因为qb[x]的值会被下一个循环
if(juge(x,qb)){ //的i值所覆盖。即使是循环的最后一个值不符合也没有关系,因为如果循环最后一个i不符合的话,那么它根本不会向下递归
vis[x][i]=; //也就自然不会对结果造成影响
dfs_b(x+);
vis[x][i]=;
}
}
}
int main(){
init();
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&map[i][j]);
dfs_b();
printf("%d\n",ans);
return ;
}



2018-08-26

2n皇后问题【dfs】的更多相关文章

  1. 蓝桥杯—BASIC-27 2n皇后问题(DFS)

    问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后, 使任意的两个黑皇后都不在同一行.同一列或同一条对角线上,任意的两个白皇后都不在同一行. 同一列或 ...

  2. n皇后问题与2n皇后问题

    n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...

  3. 蓝桥杯 基础训练 2n皇后

    数月前做的2N皇后基本看书敲代码的,然后发现当时的代码不对,正好做到算法提高的8皇后·改,顺便把以前的代码顺带改了下,题目如下: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋 ...

  4. 基础训练 2n皇后问题

    2n皇后问题 #include<iostream> #include<vector> using namespace std; int cnt = 0, n; vector&l ...

  5. 蓝桥杯 2n皇后问题 深搜

    默认大家会了n皇后问题 基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB     问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和 ...

  6. 蓝桥杯试题 基础练习 2n皇后问题以及n皇后问题

    在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于 ...

  7. 对八皇后的补充以及自己解决2n皇后问题代码

    有了上次的八皇后的基础.这次准备解决2n皇后的问题,: //问题描述// 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行./ ...

  8. C语言 · 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB        锦囊1 搜索算法. 锦囊2 先搜索n皇后的解,在拼凑成2n皇后的解. 问题描述 给定一个n*n的棋盘,棋盘中 ...

  9. 蓝桥杯 基础训练 BASIC-27 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都 ...

  10. 蓝桥--2n皇后问题(递归)--搬运+整理+注释

    N皇后问题: #include <iostream> #include <cmath> using namespace std; int N; ];//用来存放算好的皇后位置. ...

随机推荐

  1. POJ3635 Full Tank?【Dijkstra+DP】

    题意: n个城市之间有m条双向路.每条路要耗费一定的油量.每个城市的油价是固定并且已经给出的.有q个询问,表示从城市s走到e,油箱的容量为c,求最便宜的方案. 思路: 用Dijkstra+Heap即可 ...

  2. 基于json文件实现的gearman任务自动重启

    一:在gearman任务失败后,调用task_failed def task_failed(task, *args): info = '\n'.join(args) datetime = local_ ...

  3. js 执行上下文理解

    前端基础进阶(三):变量对象详解http://www.jianshu.com/p/330b1505e41d 1.创建阶段 a.生成变量对象    1.创建arguments对象   2.functio ...

  4. [转]gcc -ffunction-sections -fdata-sections -Wl,–gc-sections 参数详解

    背景 有时我们的程序会定义一些暂时使用不上的功能和函数,虽然我们不使用这些功能和函数,但它们往往会浪费我们的ROM和RAM的空间.这在使用静态库时,体现的更为严重.有时,我们只使用了静态库仅有的几个功 ...

  5. shiro自定义realm支持MD5算法认证(六)

    1.1     散列算法 通常需要对密码 进行散列,常用的有md5.sha, 对md5密码,如果知道散列后的值可以通过穷举算法,得到md5密码对应的明文. 建议对md5进行散列时加salt(盐),进行 ...

  6. ubuntu “下列的软件包有不能满足的依赖关系” 问题

    前阵子,刚安装Ubuntu时,安装vim的问题,现在些出来分享一下. apt-get install vim 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... 完成 ...

  7. 【比赛游记】FJOI2019瞎打记

    \(\mathrm{day}\) \(-4\) 又是睡到中午才起来,这样下去省选会睡迟的. 然后下午在补 WF2019 的题目,很快就能补完的(大雾). \(\mathrm{day}\) \(-3\) ...

  8. D3开发中的资料整理

    D3开发台阶比较高,需要对html,css,js非常熟练,还要对SVG非常熟悉,SVG不会就不要开发D3了,下面给大家推荐一本资料,为大家未来的开发提供便利. 这个框架产品不支持ie8,是这个产品的特 ...

  9. java并发编程系列四、AQS-AbstractQueuedSynchronizer

    什么是AbstractQueuedSynchronizer?为什么我们要分析它?  AQS:抽象队列同步器,原理是:当多个线程去获取锁的时候,如果获取锁失败了,当前线程就会被打包成一个node节点放入 ...

  10. python内存数据库pydblite

    Pure-Python engine 最近由于项目开发中发现python informixDB模块对多线程的支持非常不好,当开启两个线程同时连接informix数据库的时候,数据库会报错,显示SQL ...