<题目链接>

<   转载于   >

题目大意:

给出一个凸多边形,顶点为一些防御塔,保护范围是凸多形内部,不包括边界,在多边形内部选择一点,使得对方至少需要摧毁的塔防数量最多。(注意,是任意摧毁这么多数量的塔)

解题分析:

首先需要明白的是一个问题,对于摧毁一定数量的塔防,怎样的方案是使得剩下的保护范围最小。

结论是摧毁连续多个顶点,这样是最优的,可以尝试证明一下。

对于5个顶点的多边形,删除两个顶点,可以尝试连续两个顶点,以及间隔一个顶点。

由于原多边形是凸边形,所以还是比较容易得到连续顶点最优,同理可得其它情况。

题目要求的是使对方尽可能多的摧毁至少需要摧毁的塔防,联系复杂度等等问题

二分答案,然后判断是否存在一个区域,保证能受保护。

对于每一次二分,枚举删除连续的顶点,形成新的边界,通过半平面交判断是否存在可行区域。

注意:边界上的点是不受保护的,所以只需要判断多边形的核的面积即可。

当剩余的点在2个以及以下是,是肯定可行的。避免处理麻烦。

再看一看题目的范围,5W个顶点,半平面交至少肯定是要用nlgn的算法,然而这道题连二分+nlogn算法也会卡,有一种叫做zzy的半平面交算法,是将所有向量按极角排序之后,维护了一个双端队列,排序部分达到nlgn的复杂度,其实后面只需要o(n)。然后再看这题,原先给的凸多形是有序的,而之后我们的连线的极角也是循环有序的,线性扫描一遍,找到最小的极角,便可以依次得到有序的向量,O(n)的线性sort。

这里的代码将原来的顺序调整为逆序,半平面交的算法是针对向量的左侧,而极角是顺时针有序。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define eps 1e-10
#define N 50005
#define zero(a) (fabs(a)<eps)
using namespace std;
struct Point {
double x,y;
Point(){}
Point(double tx,double ty){x=tx;y=ty;}
}p[N],q[N];
int n,m;
struct Segment{
Point s,e;
double angle;
void get_angle(){angle=atan2(e.y-s.y,e.x-s.x);}
}seg[N];
double xmul(Point p0,Point p1,Point p2){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double Get_Area(Point pt[],int n){
double area=;
for(int i=;i<n-;i++)
area+=xmul(pt[],pt[i],pt[i+]);
return fabs(area)/;
}
Point Get_Intersect(Segment s1,Segment s2){
double u=xmul(s1.s,s1.e,s2.s),v=xmul(s1.e,s1.s,s2.e);
Point t;
t.x=(s2.s.x*v+s2.e.x*u)/(u+v);t.y=(s2.s.y*v+s2.e.y*u)/(u+v);
return t;
}
void HalfPlaneIntersect(Segment seg[],int n){
int idx;
for(int i=;i<n;i++)
if(seg[i].angle+eps<seg[(i+)%n].angle&&seg[i].angle+eps<seg[(i-+n)%n].angle){
idx=i;
break;
}
Segment deq[N];
deq[]=seg[idx];deq[]=seg[(idx+)%n];
int head=,tail=;
idx=(idx+)%n;
for(int i=;i<n;i++,idx=(idx+)%n){
while(head<tail&&xmul(seg[idx].s,seg[idx].e,Get_Intersect(deq[tail],deq[tail-]))<-eps) tail--;
while(head<tail&&xmul(seg[idx].s,seg[idx].e,Get_Intersect(deq[head],deq[head+]))<-eps) head++;
deq[++tail]=seg[idx];
}
while(head<tail&&xmul(deq[head].s,deq[head].e,Get_Intersect(deq[tail],deq[tail-]))<-eps) tail--;
while(head<tail&&xmul(deq[tail].s,deq[tail].e,Get_Intersect(deq[head],deq[head+]))<-eps) head++;
m=;
if(tail==head) return;
for(int i=head;i<tail;i++){
q[m++]=Get_Intersect(deq[i],deq[i+]);
}
if(tail>head+)
q[m++]=Get_Intersect(deq[head],deq[tail]);
}
int slove(int mid){
if(n-mid<=) return ;
for(int i=;i<n;i++){
seg[i].s=p[i];
seg[i].e=p[(i+mid+)%n];
seg[i].get_angle();
}
HalfPlaneIntersect(seg,n);
return zero(Get_Area(q,m));
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=;i<=n/;i++) swap(p[i],p[n-i]);
int ans,low=,high=n,mid;
while(low<=high){
mid=(low+high)/;
if(slove(mid)){ans=mid;high=mid-;}
else low=mid+;
}
printf("%d\n",ans);
}
return ;
}

2018-08-03

HDU 3761 炸碉堡【半平面交(nlogn)】+【二分】的更多相关文章

  1. HDU 6617 Enveloping Convex(凸包+半平面交+二分)

    首先对于这m个点维护出一个凸包M,那么问题就变成了判断凸包P进行放大缩小能不能包含凸包M.(凸包P可以进行中心对称变换再进行放大缩小,见题意) 如何判断合适的相似比呢,我们可以用二分去放大缩小凸包P的 ...

  2. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  3. UVa 1475 (二分+半平面交) Jungle Outpost

    题意: 有n个瞭望塔构成一个凸n边形,敌人会炸毁一些瞭望台,剩下的瞭望台构成新的凸包.在凸多边形内部选择一个点作为总部,使得敌人需要炸毁的瞭望塔最多才能使总部暴露出来.输出敌人需要炸毁的数目. 分析: ...

  4. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  5. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  6. [HNOI2012][BZOJ2732] 射箭 [二分+半平面交]

    题面 BZOJ题面 思路 半平面交代码讲解戳这里,用的就是这道题 我们射箭的函数形如$y=Ax^2+Bx$ 考虑每一个靶子$(x_0,y_1,y_2)$,实际上是关于$A,B$的不等式限制条件 我们只 ...

  7. 半平面交 (poj 1279(第一道半平面NlogN)完整注释 )

    半平面交的O(nlogn)算法(转载) 求n个半平面的交有三种做法: 第一种就是用每个平面去切割已有的凸多边形,复杂度O(n^2). 第二种就是传说中的分治算法.将n个半平面分成两个部分,分别求完交之 ...

  8. poj 3525Most Distant Point from the Sea【二分+半平面交】

    相当于多边形内最大圆,二分半径r,然后把每条边内收r,求是否有半平面交(即是否合法) #include<iostream> #include<cstdio> #include& ...

  9. 二分+半平面交——poj1279

    /* 二分距离,凸包所有边往左平移这个距离,半平面交后看是否还有核存在 */ #include<iostream> #include<cstring> #include< ...

随机推荐

  1. shell 终端常用插件

    参考链接: http://get.ftqq.com/992.get 1.zsh 2.autojump 3.apt-get install lamp-server^ 4.tldr 5.tree (显示目 ...

  2. 20165227《网络对抗技术》Exp0 Kali安装 Week1

    2018-2019-2 <网络对抗技术>Exp0 Kali安装 Week1 kali下载:镜像文件通过同学获得 kali具体安装步骤: 打开VMware,点击新建虚拟机,进行创建 创建完成 ...

  3. Java读取Excel文件转换成JSON并转成List——(七)

    Jar包

  4. Docker安装ActiveMQ

    ⒈下载 docker pull webcenter/activemq ⒉运行 docker run -d --name myactivemq -p 8161:8161 -p 61613:61613 - ...

  5. python3字符串与文本处理

    每个程序都回涉及到文本处理,如拆分字符串.搜索.替换.词法分析等.许多任务都可以通过内建的字符串方法来轻松解决,但更复杂的操作就需要正则表达式来解决. 1.针对任意多的分隔符拆分字符串 In [1]: ...

  6. BN讲解(转载)

    本文转载自:http://blog.csdn.net/shuzfan/article/details/50723877 本次所讲的内容为Batch Normalization,简称BN,来源于< ...

  7. zabbix通过简单shell命令监控elasticsearch集群状态

    简单命令监控elasticsearch集群状态 原理: 使用curl命令模拟访问任意一个es节点可以反馈的集群状态,集群的状态需要为green curl -sXGET http://serverip: ...

  8. 为你的VPS进行一些安全设置吧

    安全是一个VPS最基本的必备条件,若您的VPS三天两头被人攻破,那么对于网站来说也没什么意义了,所以,在创建了Web服务器之后,您首先要做的事情就是将您的VPS加固,至少让普通黑客没有办法能够攻破您的 ...

  9. 关于ftp上传changeWorkingDirectory()方法的路径切换问题

    在上传时 FTPClient提供了upload方法,对于upload(file,path)的第二个参数path ,上传到哪里的这个路径, ftp是利用changeWorkingDirectory()方 ...

  10. robotium之does not have a signature matching问题

    今天发现个很low的问题,脚本都写好了,运行Robotium测试用例时报错如下: [2017-03-01 09:58:54 - baiduAppTest] Test run failed: Permi ...