E - Segment Sum

思路:

数位dp

我们平时做的数位dp都是求满足条件的数的个数, 这里要求满足条件的数的和

只要在原来的基础上求每一位的贡献就可以了,所以传参数时要传两个

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int MOD = ;
int k;
pll dp[][];
int a[], tot;
LL pw[];
pll dfs(int pos, int s, bool zero, bool limit) {
if(!pos) return {__builtin_popcount(s) <= k, };
if(!limit && !zero && ~dp[pos][s].fi) return dp[pos][s];
int up = ;
if(limit) up = a[pos];
pll ans = {, };
for (int i = ; i <= up; i++) {
pll res;
if(zero && i == ) res = dfs(pos-, s, zero, limit&&i==up);
else res = dfs(pos-, s|(<<i), zero&&i==, limit&&i==up);
(ans.fi = ans.fi + res.fi) %= MOD;
(ans.se = ans.se + res.se + i*res.fi%MOD*pw[pos-]%MOD) %= MOD;
}
if(!limit && !zero) dp[pos][s] = ans;
return ans;
}
void init() {
pw[] = ;
for (int i = ; i < ; i++) pw[i] = (pw[i-] * ) % MOD;
for (int i = ; i < ; i++)
for (int j = ; j < ; j++) dp[i][j].fi = dp[i][j].se = -;
}
LL solve(LL n) {
tot = ;
init();
while(n) {
a[++tot] = n % ;
n /= ;
}
return dfs(tot, , , ).se; }
int main() {
LL l, r;
scanf("%lld %lld %d", &l, &r, &k);
printf("%lld\n", (solve(r) - solve(l-) + MOD) % MOD);
return ;
}

Codeforces 1073 E - Segment Sum的更多相关文章

  1. CF 1073 E. Segment Sum

    https://codeforces.com/problemset/problem/1073/E 题意:[l,r]中,出现0—9数字的种类数不超过k的数的和 dp[i][j][0/1] 表示 dfs到 ...

  2. CodeForces - 1073E :Segment Sum (数位DP)

    You are given two integers l l and r r (l≤r l≤r ). Your task is to calculate the sum of numbers from ...

  3. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  4. CF1073E Segment Sum 解题报告

    CF1073E Segment Sum 题意翻译 给定\(K,L,R\),求\(L~R\)之间最多不包含超过\(K\)个数码的数的和. \(K\le 10,L,R\le 10^{18}\) 数位dp ...

  5. CF1073E Segment Sum 自闭了

    CF1073E Segment Sum 题意翻译 给定\(K,L,R\),求\(L\)~\(R\)之间最多不包含超过\(K\)个数码的数的和. \(K<=10,L,R<=1e18\) 我 ...

  6. Codeforces 963 A. Alternating Sum(快速幂,逆元)

    Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...

  7. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  8. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum

    https://codeforces.com/contest/1073/problem/E 题意 求出l到r之间的符合要求的数之和,结果取模998244353 要求:组成数的数位所用的数字种类不超过k ...

  9. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum (数位dp求和)

    题目链接:https://codeforces.com/contest/1073/problem/E 题目大意:给定一个区间[l,r],需要求出区间[l,r]内符合数位上的不同数字个数不超过k个的数的 ...

随机推荐

  1. flask自动代码自动补全

    编写py文件时,无法补全: 在app对象后面添加:# type:Flask app=Flask(__name__)   # type:Flask from flask import Flask, fl ...

  2. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  3. hibernate validator自定义校验注解以及基于服务(服务组)的校验

    hibernate validator是Bean Validation 1.1 (JSR 349) Reference Implementation,其广泛的应用在mvc的参数校验中,尤其是使用服务端 ...

  4. 【题解】Luogu P3901 数列找不同

    我博客中对莫队的详细介绍 原题传送门 不错的莫队练手题 块数就直接取sqrt(n) 对所有询问进行排序 排序第一关键词:l所在第几块,第二关键词:r的位置 考虑Ai不大,暴力开数组 add时如果加之后 ...

  5. 为什么预处理和参数化查询可以防止sql注入呢?

    在传统的写法中,sql查询语句在程序中拼接,防注入(加斜杠)是在php中处理的,然后就发语句发送到mysql中,mysql其实没有太好的办法对传进来的语句判断哪些是正常的,哪些是恶意的,所以直接查询的 ...

  6. Codeforces Round #439 (Div. 2) Problem E (Codeforces 869E) - 暴力 - 随机化 - 二维树状数组 - 差分

    Adieu l'ami. Koyomi is helping Oshino, an acquaintance of his, to take care of an open space around ...

  7. Git Add,Git别名等

    一,Git  Add 1.  git add -A   保存所有的修改 2.  git add .     保存新的添加和修改,但是不包括删除 3.  git add -u   保存修改和删除,但是不 ...

  8. Qt重绘机制

    一.引发重绘的事件 1.调用repaint() 2.调用uodate() 二.控件hide或者show 三.其他 ps: repaint函数是立即重绘,没有优化 update会优化,异步重绘,所以如果 ...

  9. ODAC(V9.5.15) 学习笔记(七)TOraUpdateSQL

    名称 类型 说明 DataSet 指向需要执行更新操作的数据集 DeleteObject 当执行删除操作时,通过该属性执行另外一个数据集,由后者来执行更多的删除动作 DeleteSQL TString ...

  10. ODAC(V9.5.15) 学习笔记(四)TCustomDADataSet(2)

    2.连接相关 名称 类型 说明 Connection 指向一个数据库连接对象 Disconnected 设置为True将在数据库关闭后继续保持数据集的开启状态. 3. 数据获取 名称 类型 说明 Fe ...