原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ276.html

题解

首先,读入的时候就将所有的 $w_i$ 减掉 $k$ 。

于是我们要求的就是平均值最接近 0 的。

直接点分治,然后得到一些一端为当前点分中心的路径,设 $a,b$ 为其中两条路径,设 $v_a,v_b$ 为路径的边权和,$t_a,t_b$ 为路径的边数。

二分一个答案,假设差别**小于** $A$。由于题目要求的是下取整,所以我们为了方便,设的是**小于** $A$ ,这样做,最终只需要把答案减一就好了。

那么,如果合并路径 $a,b$ 可以满足条件,那么就会满足:

$$\left|\cfrac{v_a+v_b}{t_a+t_b}\right|<A\\|v_a+v_b|<A(t_a+t_b)\\=\begin{cases}v_a-At_a+v_b-At_b<0\ \ \ \ \ \ (v_a+v_b\geq 0)\\v_a+At_a+v_b+At_b>0\ \ \ \ \ \ (v_a+v_b<0)\end{cases}$$

也就是说,我们只需要对于正的 $v_a$ 和负的 $v_a$ 分开考虑,在保证取到右侧条件的基础上,维护一下最大最小值之类的东西就好了。

具体还是看代码吧。

代码

#include <bits/stdc++.h>
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long LL;
LL read(){
LL x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
const int N=50005;
const LL INF=1LL<<60;
int n;
LL K,ans=INF;
vector <pair <int,LL> > e[N];
int vis[N],size[N],Maxsize[N],root,Size;
void get_root(int x,int pre){
size[x]=1,Maxsize[x]=0;
for (auto E : e[x])
if (E.fi!=pre&&!vis[E.fi]){
get_root(E.fi,x);
size[x]+=size[E.fi];
Maxsize[x]=max(Maxsize[x],size[E.fi]);
}
Maxsize[x]=max(Maxsize[x],Size-size[x]);
if (Maxsize[x]<Maxsize[root])
root=x;
}
struct Node{
int t,id;
LL v;
Node(int _t=0,LL _v=0,int _id=0){
t=_t,v=_v,id=_id;
}
friend bool operator < (Node a,Node b){
return a.v<b.v;
}
}posi[N],nega[N];
int pc,nc;
void dfs(int x,int pre,int cnt,LL S,int ID){
if (S>=0)
posi[++pc]=Node{cnt,S,ID};
else
nega[++nc]=Node{cnt,S,ID};
for (auto E : e[x])
if (E.fi!=pre&&!vis[E.fi])
dfs(E.fi,x,cnt+1,S+E.se,ID);
}
pair <int,LL> _1,_2;
void ckMax(pair <int,LL> _3){
if (_3.se>_1.se){
if (_3.fi!=_1.fi)
_2=_1;
_1=_3;
}
else if (_3.se>_2.se&&_3.fi!=_1.fi)
_2=_3;
}
void ckMin(pair <int,LL> _3){
if (_3.se<_1.se){
if (_3.fi!=_1.fi)
_2=_1;
_1=_3;
}
else if (_3.se<_2.se&&_3.fi!=_1.fi)
_2=_3;
}
int check(LL x){
_1=_2=mp(0,INF);
for (int i=1,j=nc;i<=pc;i++){
while (j>0&&posi[i].v+nega[j].v>=0)
ckMin(mp(nega[j].id,nega[j].v-x*nega[j].t)),j--;
if (posi[i].v-x*posi[i].t+(posi[i].id==_1.fi?_2.se:_1.se)<0)
return 1;
ckMin(mp(posi[i].id,posi[i].v-x*posi[i].t));
}
_1=_2=mp(0,-INF);
for (int i=pc,j=1;i>=1;i--){
while (j<=nc&&posi[i].v+nega[j].v<0)
ckMax(mp(nega[j].id,nega[j].v+x*nega[j].t)),j++;
if (posi[i].v+x*posi[i].t+(posi[i].id==_1.fi?_2.se:_1.se)>0)
return 1;
ckMin(mp(posi[i].id,posi[i].v+x*posi[i].t));
}
return 0;
}
void solve(int x){
Maxsize[0]=n+1;
root=pc=nc=0;
get_root(x,0);
vis[x=root]=1;
posi[++pc]=Node{0,0,x};
for (auto E : e[x])
if (!vis[E.fi])
dfs(E.fi,x,1,E.se,E.fi);
sort(posi+1,posi+pc+1);
sort(nega+1,nega+nc+1);
LL L=1,R=ans-1,mid;
while (L<=R){
mid=(L+R)>>1;
if (check(mid))
R=mid-1;
else
L=mid+1;
}
ans=min(ans,L);
for (auto E : e[x])
if (!vis[E.fi])
Size=size[E.fi],solve(E.fi);
}
int main(){
Size=n=read(),K=read();
for (int i=1;i<n;i++){
int a=read(),b=read();
LL c=read()-K;
ans=min(ans,abs(c)+1);
e[a].push_back(mp(b,c));
e[b].push_back(mp(a,c));
}
solve(1);
printf("%lld\n",ans-1);
return 0;
}

  

UOJ#276. 【清华集训2016】汽水 二分答案 点分治的更多相关文章

  1. [UOJ#276][清华集训2016]汽水[分数规划+点分治]

    题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...

  2. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  3. UOJ276 [清华集训2016] 汽水 【二分答案】【点分治】【树状数组】

    题目分析: 这种乱七八糟的题目一看就是点分治,答案有单调性,所以还可以二分答案. 我们每次二分的时候考虑答案会不会大于等于某个值,注意到系数$k$是无意义的,因为我们可以通过转化使得$k=0$. 合并 ...

  4. BZOJ.4738.[清华集训2016]汽水(点分治 分数规划)

    BZOJ UOJ 记\(val_i\)是每条边的边权,\(s\)是边权和,\(t\)是经过边数,\(k\)是给定的\(k\). 在点分治的时候二分答案\(x\),设\(|\frac st-k|=x\) ...

  5. 并不对劲的uoj276. [清华集训2016]汽水

    想要很对劲的讲解,请点击这里 题目大意 有一棵\(n\)(\(n\leq 50000\))个节点的树,有边权 求一条路径使该路径的边权平均值最接近给出的一个数\(k\) 输出边权平均值下取整的整数部分 ...

  6. BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...

  7. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  8. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  9. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

随机推荐

  1. [洛谷P4234] 最小差值生成树

    题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...

  2. Java【第六篇】面向对象基础

    类和对象 面向对象的概念 面向过程 核心是过程二字,过程指的是解决问题的步骤,设计一条流水线,机械式的思维方式: 面向对象 核心就是对象二字,对象就是特征与技能的结合体,利用“类”和“对象”来创建各种 ...

  3. (二叉树 BFS) leetcode102. Binary Tree Level Order Traversal

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  4. 锁(1):spin_lock & mutex_lock的区别? .

    为什么需要内核锁? 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理   有哪些内核锁机制? (1)原子操作 atomic ...

  5. utf8mb4的大小写敏感性测试及其修改方法

    utf8mb4的大小写敏感性测试及其修改方法 utf8mb4_ unicode_ ci 与 utf8mb4_ general_ ci 如何选择字符除了需要存储,还需要排序或比较大小,涉及到与编码字符集 ...

  6. mysql加速导入数据的简单设置

    mysql加速导入数据的简单设置 # 修改前查询参数值 show variables like 'foreign_key_checks'; show variables like 'unique_ch ...

  7. Kubenetes 资源清单定义入门

    Kubernetes 常用资源 资源  对象 工作负载型资源对象(workload): Pod  Replicaset  ReplicationController  Deployments Stat ...

  8. 【转载】c++指针的指针和指针的引用

    https://www.cnblogs.com/li-peng/p/4116349.html

  9. AngularJS DI(依赖注入)实现推测

    AngularJS DI(依赖注入) http://www.cnblogs.com/whitewolf/archive/2012/09/11/2680659.html 回到angularjs:在框架中 ...

  10. Contest2154 - 2019-2-28 高一noip基础知识点 测试1 题解版

    传送门 预计得分:100+100+100+100=400 实际得分:55+100+60+80=295 细节决定成败啊!!! T1 这道题思路很简单,就是一些细节很变态坑人 首先,数据不一定是有序的,虽 ...