给出两个数a,b

求k     使得 a+k b+k有最小公倍数

a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小

因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大公约数了;

首先有个结论 gcd(x,y)=gcd(x,y-x) (y>x)

令c=gcd(x,y),那么x%c=0,y%c=0,(y-x)%c=0,所以gcd(x,y)=gcd(x,y-x)

因为题目中d=x-y的值不会变,所以我们就可以通过枚举d的因子,来凑a+k (d的因子也是(a+k)的因子)

拓展欧几里德 算法 待学。。。

#include<bits/stdc++.h>
using namespace std;
using LL = long long;
LL gcd(LL a, LL b){
return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b){
return a * b / gcd(a, b);
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
//gcd(a + k, b + k) == gcd(a - b, a + k);
LL a, b;
cin >> a >> b;
if(a < b) swap(a, b);
LL x = abs(a - b), ans = lcm(a, b), ansk = ;
for(LL i = , k; i * i <= x; i += ) if(x % i == ){
k = i - a % i;
if(lcm(a + k, b + k) < ans){
ans = lcm(a + k, b + k);
ansk = k;
}
k = x / i - a % (x / i);
if(lcm(a + k, b + k) < ans){
ans = lcm(a + k, b + k);
ansk = k;
}
}
if(a > b){ }
cout << ansk;
return ;
}

CF 552 Neko does Maths的更多相关文章

  1. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. C. Neko does Maths

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  3. CF 552(div 3) E Two Teams 线段树,模拟链表

    题目链接:http://codeforces.com/contest/1154/problem/E 题意:两个人轮流取最大值与旁边k个数,问最后这所有的数分别被谁给取走了 分析:看这道题一点思路都没有 ...

  4. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  5. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  6. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  7. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  8. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  9. CF #552(div3)G 最小lcm

    题目链接:http://codeforces.com/contest/1154/problem/G 题意:lcm是最小公倍数,本题就是给你一个数组(可能会重复),要求你判断出那两个数的最小公倍数最小, ...

随机推荐

  1. spring Boot 入门--为什么用spring boot

    为什么用spring boot 回答这个问题不得不说下spring 假设你受命用Spring开发一个简单的Hello World Web应用程序.你该做什么? 我能想到一些 基本的需要.  一个项目 ...

  2. SQL随记(六)

    1.关于dbms_sql包的一些执行语句 cursor_name := DBMS_SQL.OPEN_CURSOR; --打开游标: DBMS_SQL.PARSE(cursor_name, var_dd ...

  3. Springboot集成Spring Batch

    Spring官网 (https://spring.io/projects/spring-batch#overview)对Spring  Batch的解释: 一个轻量级的.全面的批处理框架,用于开发对企 ...

  4. Java基础知识拾遗(三)

    集合框架 SortedSet接口,声明了以升序进行排序的行为. Queue接口,声明了队列行为,队列通常是先进先出的列表 Deque接口,扩展了Queue接口,声明了双端队列的行为.双端队列可以像标准 ...

  5. 2018-2019-2 实验二 Java面向对象程序设计

    实验内容 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 实验要求 1.没有Linux基础的同学 ...

  6. windows 双网卡同时上专网(内网)和外网

    本操作是用网线做专网(内网),无线网卡用于外网 1. 记录有线网卡的网络的网关,例如10.103.14.1 2. 有线网卡必须是手动指定的ip地址,把网关清掉,例如 3. 删除0.0.0.0 路由 r ...

  7. win10 64位Python 3.6.2 + Django 环境安装

    一.安装Python3.6.2 1.下载安装包 https://www.python.org/downloads/release/python-362/ 2.一直下一步,记得到了这个界面全部勾选再下一 ...

  8. pyQt5不让进度条卡住

    这里我们用一个更新程序做示例, 下载文件的过程中让进度条实时显示下载进度. 如果下载和更新进度条的工作都放在一个线程中,会出现进度条卡顿的情况. Qt中正确的做法是把界面刷新和工作任务交给不同的线程去 ...

  9. AppCan

    启动服务 将app程序寄宿在计算机上,在计算机上调试:访问服务地址,将appToken值复制一下 在浏览器输入192.168.2.102:3000/appToken的值/文件路径后即可调试 入口文件 ...

  10. 【easy】532. K-diff Pairs in an Array

    这道题给了我们一个含有重复数字的无序数组,还有一个整数k,让我们找出有多少对不重复的数对(i, j)使得i和j的差刚好为k.由于k有可能为0,而只有含有至少两个相同的数字才能形成数对,那么就是说我们需 ...