Havel-Hakimi定理的方法来构图
给定一组非负数字,(数字为节点的度),判断该组数字能不能构成图。
Havel-Hakimi定理:
将序列按照从大到小排序之后,从第二个数开始到第一个数的长度+1为止,依次减1。每操作一次,删掉第一个数字。直到整个数组被删完都没有-1出现。则可图。
按照这个定理,我们可做的操作如下:
1.排序
2.先判断第一个数的度是否大于序列-1的长度,如果大于则非图。
如果小于等于,则后面的数依次减1.小于0,则跳出。
3.存图:循环过程中,如果能减1,则第一个数之后的id都指向第一个数。
实例:
3 1 2 1 1
第一次:3 2 1 1 1 删掉3,后面依次减1
得:1 0 0 1
第二次:1 1 0 0.删掉1,后面依次减1
得:0 0 0
所以可图
代码如下:
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef struct {
int id;
int d;
}Arg; Arg arg[];
int ans[][]; int cmp(const void *a,const void *b){
return ((Arg*)b)->d-((Arg*)a)->d;
}//从大到小 int main(){
int t,n;
cin>>t;
while(t--){
cin>>n;
memset(ans,,sizeof(ans));//每一次,将数组置0
for(int i=;i<n;i++){
cin>>arg[i].d;
arg[i].id=i;
}
int k=,i,j;
while(k<n){
qsort(arg+k,n-k,sizeof(arg[]),cmp);//第一次排序后,每次删除第一个数排序
if(arg[k].d>n-k-)
break;//如果当前度数已经大于后面的长度,这说明不可能是图
for(i=;i<=arg[k].d;i++){//次数 if(arg[i+k].d<=)//小于0跳出
break;
arg[i+k].d--;
ans[arg[k].id][arg[k+i].id]=ans[arg[k+i].id][arg[k].id]=;//将后一个数的id,指向前一个数
}
if(i<=arg[k].d)//中途跳出
break;
k++;
}
if(k<n)//没有删完,就跳出了
cout<<"NO"<<endl;
else
{
cout<<"YES"<<endl;
for(i=;i<n;i++){
for( j=;j<n;j++)
cout<<ans[i][j]<<" ";
cout<<endl;
}
} }
return ;
}
Havel-Hakimi定理的方法来构图的更多相关文章
- POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...
- POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9897 Accepted: 41 ...
- POJ 1659 Havel-Hakimi定理
关于题意和Havel-Hakimi定理,可以看看http://blog.csdn.net/wangjian8006/article/details/7974845 讲得挺好的. 我就直接粘过来了 [ ...
- poj 1659 Frogs' Neighborhood( 青蛙的邻居)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9639 Accepted: 40 ...
- Havel-Hakimi定理(推断是否可图序列)
给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一相应.则称此序列可图化.进一步.若图为简单图,则称此序列可简单图化 至于能不能依据这个序列构造一个图,就须要依据Havel-H ...
- Codeforces 1091E New Year and the Acquaintance Estimation Erdős–Gallai定理
题目链接:E - New Year and the Acquaintance Estimation 题解参考: Havel–Hakimi algorithm 和 Erdős–Gallai theore ...
- 复旦大学2016--2017学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前十名 宁盛臻(100).朱民哲(92).徐钰伦(86).范凌虎(85).沈伊南(84).何陶然(84).丁知愚(83).焦思邈(83).董瀚泽(82).钱信(81) 二.总成绩计 ...
- Kolmogorov复杂性
原文-wiki 看Kolmogorov复杂性看到云里雾里,于是干脆把wiki上的翻译了一下. [toc] Chaitin complexity, algorithmic entropy, progra ...
- 现代控制理论习题解答与Matlab程序示例
现代控制理论习题解答与Matlab程序示例 现代控制理论 第三版 课后习题参考解答: http://download.csdn.net/detail/zhangrelay/9544934 下面给出部分 ...
随机推荐
- 1120 机器人走方格 V3(组合数)
题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- 关于sniff函数的一个小坑
最近在用scapy模块写一个关于WiFi的脚本时用到sniff函数,其中遇到了一个小坑,记录如下: sniff函数是在指定网卡上每次嗅探到一个数据包后然后将它传给prn指定的函数.
- 「luogu3313」[SDOI2014] 旅行
题目大意 :有 n 个城市连成一棵树, 每个城市有两个关键字, 一个是该城市的宗教, 另一个是城市的评级;旅行者要在城市间旅行, 他只会在和自己宗教相同的城市留宿;维护四个树上操作 { 1. “CC ...
- C++设计模式——访问者模式
访问者模式 在GOF的<设计模式:可复用面向对象软件的基础>一书中对访问者模式是这样说的:表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的 ...
- 【原创】大数据基础之CM5(Cloudera Manager)+CDH5离线安装
CM/CDH 5.16.1 CM官方:https://www.cloudera.com/products/product-components/cloudera-manager.html CDH官方: ...
- sublim 插件
sublim 插件 https://www.cnblogs.com/hykun/p/sublimeText3.html html 代码自动 + tab ul>li>img+p+a ! ul ...
- IntelliJ IDEA编辑器光标定位错误的问题!
这几天我的IntelliJ IDEA编辑器总出现一个问题 打开一个项目文件后 点击文件内容无法获得输入光标,不能编辑文件 问题根源(个人): 因为近期本人测试项目时 在编辑器启动后,修改了本地时间 解 ...
- Java 模拟http请求
package ln; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamRea ...
- RC terms.
ETA: estimated time of arrival DEA: 1-Leg: 2-Leg: FCC: L10N: LocalizatioN i18N: InternationalizatioN ...