Time Limit: 8 Sec  Memory Limit: 128 MB
Submit: 397  Solved: 206
[Submit][Status][Discuss]

Description

There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.
 
After the ring has been destroyed, the devil doesn't feel angry, and she is attracted by z*p's wisdom and handsomeness. So she wants to find z*p out.
 
But what she only knows is one part of z*p's DNA sequence S leaving on the broken ring.
 
Let us denote one man's DNA sequence as a string consist of letters from ACGT. The similarity of two string S and T is the maximum common subsequence of them, denote by LCS(S,T).
 
After some days, the devil finds that. The kingdom's people's DNA sequence is pairwise different, and each is of length m. And there are 4^m people in the kingdom.
 
Then the devil wants to know, for each 0 <= i <= |S|, how many people in this kingdom having DNA sequence T such that LCS(S,T) = i.
 
You only to tell her the result modulo 10^9+7.

Input

The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains a string S. the second line contains an integer m.
 
T<=5
|S|<=15. m<= 1000.

Output

For each case, output the results for i=0,1,...,|S|, each on a single line.

Sample Input

1
GTC
10

Sample Output

1
22783
528340
497452

HINT

 

Source

首先想一下LCS的转移方程

$$lcs[i][j]=max \begin{cases} lcs[i-1][j-1]+1 & \text{if t[i]=s[j]} \\ lcs[i-1][j] \\ lcs[i][j-1] \end{cases}$$

这样的话,当$i$确定是,$lcs[i][j]$和$lcs[i][j-1]$最多相差$1$

且题目中说$|S|<= 15$,因此我们考虑把差分后的lcs数组状压起来

那么如何统计答案呢?

设$f[i][sta]$表示在第$i$个位置,此时lcs的状态为$sta$的方案数,

然后我们枚举一下这个位置选ACGT中的哪个

设$trans[sta'][A/C/G/T]$为在$sta$状态表示的lcs后加了ACGT中的一个后的状态,这个很显然可以预处理得到

那么转移方程为

$$f[i][ trans[sta][k] ] += f[i - 1][sta] $$

$$f[0][0] = 1$$

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = , mod = 1e9 + ;
char S[], SS[] = {"ACGT"};
int a[], f[MAXN][( << ) + ], trans[( << ) + ][], N, Len, limit, ans[];
int tmp[][];
int solve(int sta, int ch) {
int ret = ;
memset(tmp, , sizeof(tmp));
for(int i = ; i < N; i++) tmp[][i + ] = tmp[][i] + ((sta >> i) & );
for(int i = ; i <= N; i++) {
int mx = ;
if(a[i] == ch) mx = tmp[][i - ] + ;
mx = max( max(mx, tmp[][i]), tmp[][i-]);
tmp[][i] = mx;
}
for(int i = ; i < N; i++) ret += ( << i) * (tmp[][i + ] - tmp[][i]);
return ret;
}
int main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
int QWQ;scanf("%d", &QWQ);
while(QWQ--) {
memset(f, , sizeof(f));memset(ans, , sizeof(ans));
scanf("%s", S + );
N = strlen(S + ); limit = ( << N) - ;
for(int i = ; i <= N; i++)
for(int j = ; j < ; j++)
if(S[i] == SS[j]){a[i] = j + ;break;}
scanf("%d", &Len);
f[][] = ;
for(int sta = ; sta <= limit; sta++)
for(int j = ; j <= ; j++)
trans[sta][j] = solve(sta, j);
for(int i = ; i <= Len; i++)
for(int sta = ; sta <= limit; sta++)
for(int k = ; k <= ; k++)
f[i][ trans[sta][k] ] = (f[i][ trans[sta][k] ] + f[i - ][sta]) % mod;
for(int sta = ; sta <= limit; sta++)
ans[__builtin_popcount(sta)] = (ans[__builtin_popcount(sta)] + f[Len][sta]) % mod;
//这个函数是算出sta中1的个数
for(int i = ; i <= N; i++)
printf("%d\n", ans[i] % mod);
}
return ;
}

BZOJ3864: Hero meet devil(dp套dp)的更多相关文章

  1. BZOJ3864: Hero meet devil【dp of dp】

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  2. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  3. HDU 4899 Hero meet devil (状压DP, DP预处理)

    题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...

  4. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

  5. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  6. DP套DP

    DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...

  7. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  8. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  9. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

随机推荐

  1. Servlet工作原理解析 《深入分析java web 技术内幕》第九章

    参考关于servblet的相关文章 侧重概况:https://blog.csdn.net/levycc/article/details/50728921 ibm的相关:https://www.ibm. ...

  2. GIT的使用(Gitlab上传本地仓库代码,Webstorm修改更新)

    准备:GIT的安装,Gitlab账户登陆,webstorm的安装 1.首先,你得先会在Gitlab中创建一个团体,在团体中创建一个项目,先建组,再建项目,网上哪里都有教程,随便找了个网址: https ...

  3. MUI 实用教程

    MUI 实用JS教程: https://www.kancloud.cn/benhailong/mui/319751  MUI 实用教程: https://www.kancloud.cn/benhail ...

  4. MySQL 修改账号的IP限制条件

    今天遇到一个需求:修改MySQL用户的权限,需要限制特定IP地址才能访问,第一次遇到这类需求,结果在测试过程,使用更新系统权限报发现出现了一些问题, 具体演示如下. 下面测试环境为MySQL 5.6. ...

  5. (转)聊聊Greenplum的那些事

    开卷有益——作者的话 有时候真的感叹人生岁月匆匆,特别是当一个IT人沉浸于某个技术领域十来年后,蓦然回首,总有说不出的万千感慨. 笔者有幸从04年就开始从事大规模数据计算的相关工作,08年作为Gree ...

  6. Server 2008 R2多用户远程桌面连接授权,解决120天过期问题

    在工作中,我们往往需要远程服务器,经常会遇到以下这两个麻烦事. 一.远程桌面的连接数限制,超出系统就会提示超过连接数. 二.远程桌面连接时,同一个用户不能同时远程2个桌面连接. ----------- ...

  7. SQLServer之触发器简介

    触发器定义 触发器是数据库服务器中发生事件时自动执行的一种特殊存储过程.SQLServer允许为任何特定语句创建多个触发器.它的执行不是由程序调用,也不是手工启动,而是由事件来触发,当对数据库进行操作 ...

  8. [原创]GDB调试指南-断点设置

    前言 上篇<GDB调试指南-启动调试>我们讲到了GDB启动调试的多种方式,分别应用于多种场景.今天我们来介绍一下断点设置的多种方式. 为何要设置断点 在介绍之前,我们首先需要了解,为什么需 ...

  9. .NET CORE学习笔记系列(1)——ASP.NET MVC Core 介绍和项目解读

    ASP.NET MVC Core 项目文件夹解读 一.项目文件夹总览 1.1.Properties——launchSettings.json 启动配置文件,你可以在项目中“Properties”文件夹 ...

  10. Linux systemtap定位系统IO资源使用情况(ok)

    一.systemtap介绍 SystemTap是一个强大的调试工具,是监控和跟踪运行中的Linux 内核的操作的动态方法,确切的说应该是一门调试语言,因为它有自己的语法,也有解析.编译.运行等过程(准 ...