BZOJ3864: Hero meet devil(dp套dp)
Time Limit: 8 Sec Memory Limit: 128 MB
Submit: 397 Solved: 206
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
GTC
10
Sample Output
22783
528340
497452
HINT
Source
首先想一下LCS的转移方程
$$lcs[i][j]=max \begin{cases} lcs[i-1][j-1]+1 & \text{if t[i]=s[j]} \\ lcs[i-1][j] \\ lcs[i][j-1] \end{cases}$$
这样的话,当$i$确定是,$lcs[i][j]$和$lcs[i][j-1]$最多相差$1$
且题目中说$|S|<= 15$,因此我们考虑把差分后的lcs数组状压起来
那么如何统计答案呢?
设$f[i][sta]$表示在第$i$个位置,此时lcs的状态为$sta$的方案数,
然后我们枚举一下这个位置选ACGT中的哪个
设$trans[sta'][A/C/G/T]$为在$sta$状态表示的lcs后加了ACGT中的一个后的状态,这个很显然可以预处理得到
那么转移方程为
$$f[i][ trans[sta][k] ] += f[i - 1][sta] $$
$$f[0][0] = 1$$
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = , mod = 1e9 + ;
char S[], SS[] = {"ACGT"};
int a[], f[MAXN][( << ) + ], trans[( << ) + ][], N, Len, limit, ans[];
int tmp[][];
int solve(int sta, int ch) {
int ret = ;
memset(tmp, , sizeof(tmp));
for(int i = ; i < N; i++) tmp[][i + ] = tmp[][i] + ((sta >> i) & );
for(int i = ; i <= N; i++) {
int mx = ;
if(a[i] == ch) mx = tmp[][i - ] + ;
mx = max( max(mx, tmp[][i]), tmp[][i-]);
tmp[][i] = mx;
}
for(int i = ; i < N; i++) ret += ( << i) * (tmp[][i + ] - tmp[][i]);
return ret;
}
int main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
int QWQ;scanf("%d", &QWQ);
while(QWQ--) {
memset(f, , sizeof(f));memset(ans, , sizeof(ans));
scanf("%s", S + );
N = strlen(S + ); limit = ( << N) - ;
for(int i = ; i <= N; i++)
for(int j = ; j < ; j++)
if(S[i] == SS[j]){a[i] = j + ;break;}
scanf("%d", &Len);
f[][] = ;
for(int sta = ; sta <= limit; sta++)
for(int j = ; j <= ; j++)
trans[sta][j] = solve(sta, j);
for(int i = ; i <= Len; i++)
for(int sta = ; sta <= limit; sta++)
for(int k = ; k <= ; k++)
f[i][ trans[sta][k] ] = (f[i][ trans[sta][k] ] + f[i - ][sta]) % mod;
for(int sta = ; sta <= limit; sta++)
ans[__builtin_popcount(sta)] = (ans[__builtin_popcount(sta)] + f[Len][sta]) % mod;
//这个函数是算出sta中1的个数
for(int i = ; i <= N; i++)
printf("%d\n", ans[i] % mod);
}
return ;
}
BZOJ3864: Hero meet devil(dp套dp)的更多相关文章
- BZOJ3864: Hero meet devil【dp of dp】
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- bzoj千题计划241:bzoj3864: Hero meet devil
http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...
- HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...
- BZOJ 3864 Hero meet devil (状压DP)
最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...
- bzoj3864: Hero meet devil
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
随机推荐
- Java新知识系列 四
[]URL的组成<协议>://<主机>:<端口>/<路径> . []线程的定义实例化和启动. []类的final变量初始化需要满足的条件. []管道通信 ...
- MongoDB 提升性能的18原则(开发设计阶段)
MongoDB 是高性能数据,但是在使用的过程中,大家偶尔还会碰到一些性能问题.MongoDB和其它关系型数据库相比,例如 SQL Server .MySQL .Oracle 相比来说,相对较新,很多 ...
- c/c++ linux epoll系列1 创建epoll
linux epoll系列1 创建epoll 据说select和poll的弱点是,随着连接(socket)的增加,性能会直线下降. epoll不会随着连接(socket)的增加,性能直线下降. 知识点 ...
- Serverless架构
什么是Serverless架构 Servlerless 架构是新兴的架构体系,在Serverless 架构中,开发者无需考虑服务器的问题,计算资源作为服务而不是服务器的概念出现,这样,开发者只需要关注 ...
- 为什么不使用github的wiki而是使用mkdocs做文档管理?
为什么不使用github的wiki而是使用mkdocs做文档管理? 目前 KSFramework 是使用mkdocs来做在线文档 而非使用github的wiki,这是为什么呢? 在windows下搭建 ...
- 滑动窗口最大值的golang实现
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位. 返回滑动窗口最大值 输入: nums = [, ...
- web Deploy发布问题
使用vs开发的时候,经常会发布项目.传统发布是登陆远程桌面.或ftp这些发布都有一定的麻烦.不能灵活的管理发布的文件.因此后来研究了web Deploy,研究之后发现是很不错的发布工具.这里把我使用w ...
- vs 2015安装包
Visual Studio 2015 下载含(更新3)及密钥 Visual Studio 2015 是一个丰富的集成开发环境,可用于创建出色的 Windows.Android 和 iOS 应用程序以及 ...
- Shiro学习(一)——Shiro简介
Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring Security,可能没有Spring Security做的功能强大 ...
- 2017-8-2新开了一个ABP交流的QQ群(291304962 ),欢迎加入
因为ABP架构设计交流群人数一直爆满,很多想交流ABP的朋友无法加进群里, 刚新建了一个QQ群,群号291304962(ABP架构设计交流群3),欢迎对ABP感兴趣的朋友加入. 欢迎加QQ群: ABP ...