BZOJ3864: Hero meet devil(dp套dp)
Time Limit: 8 Sec Memory Limit: 128 MB
Submit: 397 Solved: 206
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
GTC
10
Sample Output
22783
528340
497452
HINT
Source
首先想一下LCS的转移方程
$$lcs[i][j]=max \begin{cases} lcs[i-1][j-1]+1 & \text{if t[i]=s[j]} \\ lcs[i-1][j] \\ lcs[i][j-1] \end{cases}$$
这样的话,当$i$确定是,$lcs[i][j]$和$lcs[i][j-1]$最多相差$1$
且题目中说$|S|<= 15$,因此我们考虑把差分后的lcs数组状压起来
那么如何统计答案呢?
设$f[i][sta]$表示在第$i$个位置,此时lcs的状态为$sta$的方案数,
然后我们枚举一下这个位置选ACGT中的哪个
设$trans[sta'][A/C/G/T]$为在$sta$状态表示的lcs后加了ACGT中的一个后的状态,这个很显然可以预处理得到
那么转移方程为
$$f[i][ trans[sta][k] ] += f[i - 1][sta] $$
$$f[0][0] = 1$$
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = , mod = 1e9 + ;
char S[], SS[] = {"ACGT"};
int a[], f[MAXN][( << ) + ], trans[( << ) + ][], N, Len, limit, ans[];
int tmp[][];
int solve(int sta, int ch) {
int ret = ;
memset(tmp, , sizeof(tmp));
for(int i = ; i < N; i++) tmp[][i + ] = tmp[][i] + ((sta >> i) & );
for(int i = ; i <= N; i++) {
int mx = ;
if(a[i] == ch) mx = tmp[][i - ] + ;
mx = max( max(mx, tmp[][i]), tmp[][i-]);
tmp[][i] = mx;
}
for(int i = ; i < N; i++) ret += ( << i) * (tmp[][i + ] - tmp[][i]);
return ret;
}
int main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
int QWQ;scanf("%d", &QWQ);
while(QWQ--) {
memset(f, , sizeof(f));memset(ans, , sizeof(ans));
scanf("%s", S + );
N = strlen(S + ); limit = ( << N) - ;
for(int i = ; i <= N; i++)
for(int j = ; j < ; j++)
if(S[i] == SS[j]){a[i] = j + ;break;}
scanf("%d", &Len);
f[][] = ;
for(int sta = ; sta <= limit; sta++)
for(int j = ; j <= ; j++)
trans[sta][j] = solve(sta, j);
for(int i = ; i <= Len; i++)
for(int sta = ; sta <= limit; sta++)
for(int k = ; k <= ; k++)
f[i][ trans[sta][k] ] = (f[i][ trans[sta][k] ] + f[i - ][sta]) % mod;
for(int sta = ; sta <= limit; sta++)
ans[__builtin_popcount(sta)] = (ans[__builtin_popcount(sta)] + f[Len][sta]) % mod;
//这个函数是算出sta中1的个数
for(int i = ; i <= N; i++)
printf("%d\n", ans[i] % mod);
}
return ;
}
BZOJ3864: Hero meet devil(dp套dp)的更多相关文章
- BZOJ3864: Hero meet devil【dp of dp】
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- bzoj千题计划241:bzoj3864: Hero meet devil
http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...
- HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...
- BZOJ 3864 Hero meet devil (状压DP)
最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...
- bzoj3864: Hero meet devil
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
随机推荐
- Servlet工作原理解析 《深入分析java web 技术内幕》第九章
参考关于servblet的相关文章 侧重概况:https://blog.csdn.net/levycc/article/details/50728921 ibm的相关:https://www.ibm. ...
- GIT的使用(Gitlab上传本地仓库代码,Webstorm修改更新)
准备:GIT的安装,Gitlab账户登陆,webstorm的安装 1.首先,你得先会在Gitlab中创建一个团体,在团体中创建一个项目,先建组,再建项目,网上哪里都有教程,随便找了个网址: https ...
- MUI 实用教程
MUI 实用JS教程: https://www.kancloud.cn/benhailong/mui/319751 MUI 实用教程: https://www.kancloud.cn/benhail ...
- MySQL 修改账号的IP限制条件
今天遇到一个需求:修改MySQL用户的权限,需要限制特定IP地址才能访问,第一次遇到这类需求,结果在测试过程,使用更新系统权限报发现出现了一些问题, 具体演示如下. 下面测试环境为MySQL 5.6. ...
- (转)聊聊Greenplum的那些事
开卷有益——作者的话 有时候真的感叹人生岁月匆匆,特别是当一个IT人沉浸于某个技术领域十来年后,蓦然回首,总有说不出的万千感慨. 笔者有幸从04年就开始从事大规模数据计算的相关工作,08年作为Gree ...
- Server 2008 R2多用户远程桌面连接授权,解决120天过期问题
在工作中,我们往往需要远程服务器,经常会遇到以下这两个麻烦事. 一.远程桌面的连接数限制,超出系统就会提示超过连接数. 二.远程桌面连接时,同一个用户不能同时远程2个桌面连接. ----------- ...
- SQLServer之触发器简介
触发器定义 触发器是数据库服务器中发生事件时自动执行的一种特殊存储过程.SQLServer允许为任何特定语句创建多个触发器.它的执行不是由程序调用,也不是手工启动,而是由事件来触发,当对数据库进行操作 ...
- [原创]GDB调试指南-断点设置
前言 上篇<GDB调试指南-启动调试>我们讲到了GDB启动调试的多种方式,分别应用于多种场景.今天我们来介绍一下断点设置的多种方式. 为何要设置断点 在介绍之前,我们首先需要了解,为什么需 ...
- .NET CORE学习笔记系列(1)——ASP.NET MVC Core 介绍和项目解读
ASP.NET MVC Core 项目文件夹解读 一.项目文件夹总览 1.1.Properties——launchSettings.json 启动配置文件,你可以在项目中“Properties”文件夹 ...
- Linux systemtap定位系统IO资源使用情况(ok)
一.systemtap介绍 SystemTap是一个强大的调试工具,是监控和跟踪运行中的Linux 内核的操作的动态方法,确切的说应该是一门调试语言,因为它有自己的语法,也有解析.编译.运行等过程(准 ...