牛客 2020.10.20 TG 前两题
T1 GCD
数学水题。。。
对于每个数,如果这个数有两个及以上的质因数的话,它所有除 \(1\) 之外的因数求 \(GCD\) 的值一定为 \(1\)。那么判断是否是质数或质数的次方即可(质数除 \(1\) 之外的因数只有它本身,而质数的次方除 \(1\) 之外的质因数只有一个,故不存在两个及以上的质因数。
再来考虑特殊的是质数的次方 \(x^n\) 的情况,它除 \(1\) 之外的因数一定只有 \(x\),所以得出这个质数并累加答案即可。那就跑欧拉筛的时候边跑边暴力更新呗。
#include <cstdio>
#include <cmath>
const int MAXN = 1e7 + 5;
int num[MAXN], len = 0;
bool flag[MAXN];
int vis[MAXN];
typedef long long LL;
void euler(int n) { // 欧拉筛
for(int i = 2; i <= n; i++) {
if(!flag[i]) {
num[++len] = i;
int t = 1;
while((LL)t * i <= n) { // 暴力枚举次方
t *= i;
vis[t] = i; // 记录这个次方对应的质数
flag[t] = true;
}
}
for(int j = 1; j <= len; j++) {
if(i * num[j] > n)
break;
flag[i * num[j]] = true;
if(i % num[j] == 0)
break;
}
}
return ;
}
int main() {
int m, n;
scanf ("%d %d", &m, &n);
euler(n);
LL ans = 0;
flag[1] = true;
for(int i = m; i <= n; i++) {
if(i == 1) // 排除1的情况
continue;
if(!flag[i]) // 是质数
ans += i; // (所有除1之外的因数的GCD即是本身
else if(vis[i]) // 如果是质数的某个次方
ans += vis[i]; // 加上那个对应的质数
else // 否则这个数有两个及以上的质因子,加一即可
ans++;
}
printf("%lld\n", ans);
return 0;
}
T2 包含
显然如果用n方的算法会卡到飞起。。。(右边巨佬考场 DFS 记忆化过掉了呢
考虑优化。我们在每一次输入的时候更新一下有哪些数 \(\&\) 上这个数等于内个数本身。记这个集合内的数为 \(Q\),即是寻找有哪些 \(X\) 满足 \(Q \& X = X\)。
对于一个 \(Q \& X = X\),在二进制数位中 \(X\) 等于 \(1\) 的位,对应的 \(Q\) 中的位一定等于 \(1\),但因为 \(Q\) 是确定的,所以我们考虑依次替换掉 \(Q\) 二进制当中等于 \(1\) 的位,将其改为 \(0\),枚举所有情况即是找到了所有的 \(X\)。
至于如何枚举 \(Q\) 中为 \(1\) 的位……芜湖起飞。
int t = x;
while(t) {
vis[t] = true;
t = (t - 1) & x;
}
就是上述代码,最好在草稿纸上手推一下,不然很难理解。
为此我还和JC讨论了好久。
结论:上述代码按以下顺序枚举为 \(1\) 的位改其为 \(0\)。
Q: 1 0 0 0 1 0 0 1
1. ^
2. ^
3. ^ ^
4. ^
5. ^ ^
6. ^ ^
7. ^ ^ ^
#include <cstdio>
const int MAXN = 1000005;
bool vis[MAXN];
int main() {
int n, m;
scanf ("%d %d", &n, &m);
for(int i = 1; i <= n; i++) {
int x;
scanf ("%d", &x);
if(vis[x])
continue;
int t = x;
while(t) {
vis[t] = true;
t = (t - 1) & x;
}
}
while(m--) {
int x;
scanf ("%d", &x);
if(vis[x])
printf("yes\n");
else
printf("no\n");
}
return 0;
}
牛客 2020.10.20 TG 前两题的更多相关文章
- 2020牛客多校第八场K题
__int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...
- 牛客网数据库SQL实战解析(51-61题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 牛客网数据库SQL实战解析(41-50题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 牛客网数据库SQL实战解析(31-40题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 牛客网数据库SQL实战解析(21-30题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 牛客网数据库SQL实战解析(11-20题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 牛客网数据库SQL实战解析(1-10题)
牛客网SQL刷题地址: https://www.nowcoder.com/ta/sql?page=0 牛客网数据库SQL实战解析(01-10题): https://blog.csdn.net/u010 ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
随机推荐
- uniapp使用swiper组件做tab切换动态获取高度
swiper对高度进行了限制,所以说通常做出了tab切换的效果但是内容经常被截取掉???? 所以我在前端做了一个动态获取高度的功能 选项卡标题也就是tab切换的效果 选项卡内容区域的高度自适应 因为进 ...
- NB-IoT的PSM模式有什么优点
在NB-IoT系统中,PSM模式的优点是可进行长时间休眠,缺点是对终端接收(Mobile Terminated,MT)业务响应不及时,主要应用于远程抄表等对下行实时性要求不高的业务.实际上,物联网设备 ...
- python爬虫爬取策略
爬取策略 关注公众号"轻松学编程"了解更多. 在爬虫系统中,待抓取URL队列是很重要的一部分.待抓取URL队列中的URL以什么样的顺序排列也是一个很重要的问题,因为这涉及到先抓取那 ...
- K8s之实践Pod深入理解
K8s之实践Pod深入理解 1.同一pod下的nginx+php+mysql nginx+php+mysql.yaml文件 --- apiVersion: v1 kind: Secret meta ...
- 电脑查看当前自己的wifi密码
菜单+R 输入control 点击确认.
- Spring Cloud Alibaba 基础
Spring Cloud Alibaba 基础 什么是Spring Cloud Alibaba 这里我们不讲解Spring Cloud 和 Spring Cloud Alibaba 的关系,大家自己查 ...
- vscode实现远程linux服务器上Python开发
最近需要训练一个生成对抗网络模型,然后开发接口,不得不在一台有显卡的远程linux服务器上进行,所以,趁着这个机会研究了下怎么使用vscode来进行远程开发. 1 配置免密登录¶ (1)在 ...
- 编码风格:Mvc模式下SSM环境,代码分层管理
本文源码:GitHub·点这里 || GitEE·点这里 一.分层策略 MVC模式与代码分层策略,MVC全名是ModelViewController即模型-视图-控制器,作为一种软件设计典范,用一种业 ...
- Round 4
最近再次经历动荡期 博客只在小白时期记录过 已经沉寂许久 之前的工作在黄区 加班超多 阻隔了一切与外网交流的可能 只能凭记忆补一点最近一年来积累到的知识 不管怎么样 不能放弃自己啊老铁!
- 14、Cookie和Session组件
cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...