Gym 101464C - 计算几何+二分(uva1463)
不是很难,但是我觉得对代码能力的要求还是挺高的。
注意模块化。
因为是浮点数,所以二分用的很多很多。
参考 https://blog.csdn.net/njupt_lyy/article/details/81256538?utm_source=blogxgwz4
对半径二分,这样我们只需要判断能不能放的下这个圆。这时,通过给定的半径,对于每一条线段可以找到一个区间(或者为空),使得圆心不能落在这个区间上,我们只需要判断区间的并集是否覆盖了[0,L]。那么如何去找到这个区间呢?对于每一个线段,我们可以找到线段上y坐标的绝对值最小的点,这个点一定是线段的端点或者是零点,这是线段到直线的最短距离。如果最短距离小于半径,那么区间为空;如果最短距离大于半径,这个点两边的点到线段都具有单调性,我们对左右两侧分别二分找到距离等于半径的点即可。
细节见注释:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define eps 1e-6 struct point
{
double x,y;
point(){}
point(double _x,double _y)
{
x = _x;y = _y;
}
point operator -(const point &b)const
{
return point(x - b.x,y - b.y);
};
double operator ^(const point &b)const //当线段过x轴时,用于求与x轴交点的x坐标
{
return x*b.y - y*b.x;
}
double operator *(const point &b)const
{
return x*b.x + y*b.y;
}
}; struct line //线段。e点在右
{
point s,e;
}c[2005]; int t,n,L;
struct st
{
double l,r;
};
vector<st> v; double dist(point a,point b) //两点距离
{
return sqrt((a-b)*(a-b));
} point NearestPointToLineSeg(point P,line L) //返回线段L上距离P最近的点 也是相似三角形。
{
point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
if(t >= 0 && t <= 1)
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if(dist(P,L.s) < dist(P,L.e))
result = L.s;
else result = L.e;
}
return result;
} double find2(line L,double rr,double l,double r) //圆心区间左点 这里用二分法找;理论上讲以这个点为圆心的圆与线段相切
{
double m;
while (r-l>1e-6)
{
m=(l+r)/2;
if (dist(NearestPointToLineSeg(point(m,0),L),point(m,0))<rr) r=m; //m到线段距离小于r,则需要左移; 直到刚好切
else l=m;
}
return (l+r)/2;
} double find3(line L,double rr,double l,double r) //圆心区间右点
{
double m;
while (r-l>1e-6)
{
m=(l+r)/2;
if (dist(NearestPointToLineSeg(point(m,0),L),point(m,0))>rr) r=m;
else l=m;
}
return (l+r)/2;
} bool cmp(st a,st b) //圆心不能在的区间先左再右排序
{
if (fabs(a.l-b.l)<1e-6) return a.r<b.r;
else return a.l<b.l;
} bool ok(double h) //这个半径下能不能满足题意为空圆 false为可以
{
sort(v.begin(),v.end(),cmp);
if (v.empty()) return false; //可以 注意go函数时!ok()
if (v[0].l+eps>0) return false; //0-v[0]l 有空间做圆心
double r=v[0].r;
int i=0;
while (i<(int)v.size()-1 && (v[i+1].l+eps<r || v[i+1].l<0)) //区间没有空隙
{
i++;
r=max(r,v[i].r);
}
if (r+eps<h) return false;
else return true;
} int go(double rr)
{
v.clear();
for (int i=1;i<=n;i++)
{
double len;
double mid;
double l,r;
if (c[i].s.y*c[i].e.y>0) //x轴同侧
{
if (fabs(c[i].s.y)>fabs(c[i].e.y))
{
len=fabs(c[i].e.y); //而不是abs 到x轴的距离 len>r时就不需要考虑这条线段;否则要找到一个区间,圆心不能在区间内
mid=c[i].e.x;
}
else
{
len=fabs(c[i].s.y);
mid=c[i].s.x;
}
}
else //异侧
{
len=0; //点在x轴上,距离为0
mid=c[i].s.x+fabs((c[i].s.y/(c[i].e.y-c[i].s.y)*(c[i].e.x-c[i].s.x))); //交点x坐标 用相似三角形求
}
if (len<rr) //len<rr,需要考虑这条线段
{
l=find2(c[i],rr,-3e4,mid); //圆心区间的左点
r=find3(c[i],rr,mid,3e4); //圆心区间的右点
st x;
x.l=l;x.r=r;
v.push_back(x);
}
}
return !ok(L);
} double find1() //二分半径
{
double l=0,r=2e4;
double m;
while (r-l>1e-6)
{
m=(l+r)/2;
if (go(m)==1) l=m; //半径为m可以,就再加长一点
else r=m;
}
return (l+r)/2;
} int main()
{
//freopen("c.in","r",stdin);
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&L);
for (int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&c[i].s.x,&c[i].s.y,&c[i].e.x,&c[i].e.y); //e点在右边
if (c[i].s.x>c[i].e.x) swap(c[i].e,c[i].s);
}
printf("%.3f\n",find1());
}
return 0;
}
Gym 101464C - 计算几何+二分(uva1463)的更多相关文章
- 【bzoj1822】[JSOI2010]Frozen Nova 冷冻波 计算几何+二分+网络流最大流
题目描述 WJJ喜欢“魔兽争霸”这个游戏.在游戏中,巫妖是一种强大的英雄,它的技能Frozen Nova每次可以杀死一个小精灵.我们认为,巫妖和小精灵都可以看成是平面上的点. 当巫妖和小精灵之间的直线 ...
- 【POJ】2318 TOYS ——计算几何+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10281 Accepted: 4924 Description ...
- K - Video Reviews Gym - 101755K (二分)
题目链接: K - Video Reviews Gym - 101755K 题目大意: 一家公司想让个人给他们的产品评论,所以依次去找这个人,第i个人会评论当且仅当已经有个人评论或他确实对这个产品感兴 ...
- Gym - 101908G Gasoline 二分+最大流
G - Gasoline Gym - 101908G 题意:给出R个提供点,P个接收点,每个接收点都要接收满,还有一个运输的时间,问最小时间能够完成所有的运输 题解:首先每次都必须要满流,所以我们只要 ...
- hdu 4033 Regular Polygon 计算几何 二分+余弦定理
题目链接 给一个n个顶点的正多边形, 给出多边形内部一个点到n个顶点的距离, 让你求出这个多边形的边长. 二分边长, 然后用余弦定理求出给出的相邻的两个边之间的夹角, 看所有的加起来是不是2Pi. # ...
- B - Glider Gym - 101911B(二分)
output standard output A plane is flying at a constant height of hh meters above the ground surface. ...
- J - Joseph and Tests Gym - 102020J (二分+线段树)
题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...
- hdu 3264 09 宁波 现场 E - Open-air shopping malls 计算几何 二分 圆相交面积 难度:1
Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...
- Ice Cream Tower Gym - 101194D (贪心 + 二分 )
题目链接 : https://cn.vjudge.net/problem/Gym-101194D 题目大意 : 给你n个冰激凌球,让你用这些冰激凌球去垒冰激凌,要求是下面的这一个必须是他上面一个的两倍 ...
随机推荐
- 【一天一个知识点系列】- Http之状态码
状态码 简介 HTTP 状态码负责表示客户端 HTTP 请求的返回结果. 标记服务器端的处理是否正常. 通知出现的错误等工作 作用及类别 作用:状态码告知从服务器端返回的请求结果 状态码的类别 注意: ...
- 特征预处理之归一化&标准化
写在前面 这篇博客的主要内容 应用MinMaxScaler实现对特征数据进行归一化 应用StandardScaler实现对特征数据进行标准化 特征预处理 定义 通过一些转换函数将特征数据转换成更加 ...
- Linux中让终端输入变为非阻塞的三种方法
介绍 在linux下每打开一个终端,系统自动的就打开了三个文件,它们的文件描述符分别为0,1,2,功能分别是"标准输入"."标准输出"和"标准错误输出 ...
- Redis 实战 —— 07. 复制、处理故障、事务及性能优化
复制简介 P61 关系型数据库通常会使用一个主服务器 (master) 向多个从服务器 (slave) 发送更新,并使用从服务器来处理所有读请求. Redis 也采用了同样的方法实现自己的复制特性,并 ...
- 网络编程 — Windows TCP服务端和客户端
1. 服务端 #include <iostream> #include <signal.h> #include <forward_list> #include &l ...
- day132:2RenMJ:MJ需求文档&MJ游戏流程&Egret白鹭引擎安装&TypeScript简要介绍
目录 1.麻将产品需求文档 2.麻将游戏流程 3.Egret白鹭引擎 4.TypeScript简要了解 5.TypeScript快速入门 1.麻将产品需求文档 1.麻将术语 1.名词术语 牌⼦: 序数 ...
- Codeforces 1439B. Graph Subset Problem (思维,复杂度分析)
题意 给出一张无向图,让你找出一个大小为\(k\)的子团或者找出一个导出子图,使得图中的每个点的度数至少为\(k\). 思路 首先有个重要观察,当\(\frac{k(k-1)}{2} > m\) ...
- SSM、SSH框架搭建,面试点总结
文章目录 1.SSM如何搭建:三个框架的搭建: 2.SSM系统架构 3.SSM整合步骤 4.Spring,Spring MVC,MyBatis,Hibernate个人总结 5.面试资源 关于SSM.S ...
- msf+cobaltstrike联动(二):把cs中的机器spwan给msf
前提:CS已经获取到session,可以进入图形化管理机器,现在需要使用msf进行进一步渗透,需要msf的metepreter. 开启msf msf设置监听 msf > use exploit/ ...
- Mysql:好好的索引,为什么要下推?
前段时间有读者提议讲讲索引下推,这期就把这事儿安排上.多余的前言就不赘述了,我们直接开始. 列位坐好! 图注:思维导图 回表操作 对于数据库来说,只要涉及到索引,必然绕不过去回表操作.当然这也是我们今 ...