洛谷P4180
被教练安排讲题 可恶
这道题我是十月初上课时花了一下午做出来的,当时连倍增都不会,过程比较困难,现在看看还可以
本来想口胡一发,后来想了想可能以后要用,还是写成文章吧
Description
求一棵严格次小生成树的权值和
Analysis
次小生成树,分为严格和不严格两种
把不严格的次小生成树中权值与最小生成树相同的除去,剩下那个的就是严格次小生成树
所以考虑如何除去非严格部分就行了
Solution
既然要求次小生成树树严格小,那就可以维护一个最大值和一个次大值,保证次大值严格小于最大值
算法方面,使用 Kruskal 和 倍增
预先 DFS 处理这棵树的点深度,每个点的父亲,最大值和次大值的初始值
再使用倍增求出每个点所能到达的最大值和次大值
然后找出一颗最小生成树,统计它的权值和,并对于每条处于最小生成树中的边打一个标记
对于每条不在最小生成树中的边,找出与它相对的处于最小生成树中的最大的一条边,删去,然后一边跳一边枚举路径上的边权
然后判断当前枚举边与删去边的权值大小,若相同加入当前边的次大值,否则加入最大值,然后统计权值
最后把统计出的所有权值取一个最小值就是严格次小生成树的权值
正确性证明:
想将一条非树边加入生成树中,就必须删去它的始点终点到公共祖先路径上的一条边,否则就会构成环
想要使得生成的生成树严格小且尽可能小,就必须使得删去的那条树边尽可能大
对于每条枚举边,它的权值必定大于等于删去边,为了避免次小生成树不严格,当等于时就只能加入其次大值,否则加入其最大值
对于所有边都进行此处理,得出权值和最小的必定是严格且最小的生成树
如此 本题便得到解决
Other Things
本题比较恶心,不要读完数据直接建图,否则会爆
确定好生成树后,只建出一颗最小生成树即可
另外代码就不放了,到现在时间比较长了,写的也比较丑
希望各位看懂了
洛谷P4180的更多相关文章
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
- 洛谷P4180【Beijing2010组队】次小生成树Tree
题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- 【洛谷P4180】严格次小生成树
题目大意:给定一个 N 个顶点,M 条边的带权无向图,求该无向图的一个严格次小生成树. 引理:有至少一个严格次小生成树,和最小生成树之间只有一条边的差异. 题解: 通过引理可以想到一个暴力,即:先求出 ...
- 【洛谷 P4180】【模板】严格次小生成树[BJWC2010](倍增)
题目链接 题意如题. 这题作为我们KS图论的T4,我直接打了个很暴力的暴力,骗了20分.. 当然,我们KS里的数据范围远不及这题. 这题我debug了整整一个晚上还没debug出来,第二天早上眼前一亮 ...
- bzoj 1977 洛谷P4180 严格次小生成树
Description: 给定一张N个节点M条边的无向图,求该图的严格次小生成树.设最小生成树边权之和为sum,那么严格次小生成树就是边权之和大于sum的最小的一个 Input: 第一行包含两个整数N ...
- 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】
严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得 ...
- 洛谷 P4180 【模板】严格次小生成树[BJWC2010] LCT
首次采用了压行,感觉还不错. Code: // luogu-judger-enable-o2 #include <cstdio> #include <algorithm> #i ...
随机推荐
- Spring-Boot配置文件web性能(服务器)配置项(常用配置项为红色)
参数 介绍 server.address 服务器应绑定到的网络地址 server.compression.enabled = false 如果启用响应压缩 server.compression.exc ...
- Mac电脑jsp连接mysql
四个步骤教你如何用jsp代码连接mysql 第一步:下载jdbc驱动 进入mysql官网:https://dev.mysql.com/downloads/connector/ 找到Connect/J ...
- 设置Safari禁止访问某个网站
经过调查有三种方法可以做到:1,创立新的登录账户,然后进行家长控制:2,安装第三方的应用软件Self Control:3,其他方式 推荐大家使用下面的这个方式:三步即可 1:打开访达(Finder), ...
- 什么是Redis?
Remote Dictionary Server(Redis)是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value 数据库,并提供多种语言的API.它通常被 ...
- 自家公司关于git commit 的规范
代码提交的commit info提个建议,fix的issue是哪个issue?都要有明确的链接.推荐方式:1.建立issue,说明问题的背景和原因.http://git.startdt.net/pay ...
- Above the Median
http://www.forioi.com/p/3212 农夫约翰把他的N(1<=N<=1e5)奶牛排在一排来衡量他们的高度,牛i有:高度H_I(1<=H_I<=1e9)纳米– ...
- SSM整合详解
1.基本概念 1.1.Spring Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One ...
- 出现org.apache.ibatis.binding.BindingException异常
出现绑定式异常 查看target文件夹里面再mapper中,发现运行时缺少xml文件 解决办法 1.将xml文件复制到target中Mapper文件夹下面. 2.将xml放到resource目录下 3 ...
- 你知道 react-color 的实现原理吗
一.前言 ReactColor 是一个优秀的 React 颜色选择器组件,官方给了多种布局供开发者选择. 笔者常用的主题为 Sketch,这种主题涵盖了颜色面板.推荐色块.RGB颜色输入等功能,比较完 ...
- 【C++】《C++ Primer 》第五章
第五章 语句 一.简单语句 表达式语句:一个表达式末尾加上分号,就变成了表达式语句. 空语句:只有一个单独的分号,记得注释说明提高代码可读性. 复合语句(块):用花括号 {}包裹起来的语句和声明的序列 ...